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PREFACE

hese final three volumes are regarded as constituting a single volume, with

Chapters 1 to 6 in Volume III, Chapters 7 t0 9 in Volume 1V, and Chap-
ters 10 to 13 in Volume V. After finishing this multi-volume, I felt somewhat
like a man who has tried to cleanse the Augean stables with a Johnny-Mop.
Leafing through Mathematical Reviews for the past thirty years, and gazing at
the dignified tomes which represent the glories of the classical era, one quickly
senses that Differential Geometry is a field of overwhelming extent, beyond the
comprehension of any mortal. I suppose such lucubrations ought to buoy up
one’s spirit with admiration for human achievement, but I must confess that
they usually lead me instead to a state of brooding melancholy.

Although the strident word “comprehensive” still stands emblazoned in the
tile, the Bibliography, in Volume V, will begin to give some idea how much
as has necessarily been left out. There are also mini-bibliographies in Volumes
III and IV for the works explicitly cited there. Problems have been restricted
practically to the absolute minimum, basically facts left to the reader as exercises.

As a glance at the table of contents will show, Volume III is essentially a course
in classical surface theory, the only difference being that Chapter | prepares the
ground for applying the intrinsic geometry of Riemannian manifolds, which was
discussed in Volume II. Although much space is devoted to classical material,
much of the generalized material in Chapter 7 would be almost incomprehen-
sible without the prior treatment of surface theory. The only exception is the
second half of Chapter 2 (from page 75 on), which can (and probably should)
be omitted completely without loss of continuity. For those who don’t care for
the motivational twiddle-twaddle, an introduction to “modern” differential ge-
ometry can be extracted from Chapters 1, 7 (parts D and E), 8, and 13, with an
assist from Chapter 5, and the first halves of Chapters 9 and 12.

References like Theorem 6-3 or 7-2, when quoted in Volumes 11 or IV, say,
refer (o Chapter 6 of Volume III, and Chapter 7 of Volume IV, respectively.
References to results of Volumes 1 and II, or page numbers from any other
volume, carry an additional Roman numeral, e.g., Theorem 1.6-3, or pg. IV.167.
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CHAPTER 1

THE FUNDAMENTAL EQUATIONS
FOR HYPERSURFACES

n this chapter we are going to begin by considering a very general situation.

Let i: M®™ — N™ be an immersion of an n-dimensional manifold M nto
an m-dimensional manifold N; it is customary to refer to N as the “ambient
space” and to define m — n to be the codimension of M in N. We will be
interested in the case where N has a Riemannian metric { , ), so that M can
be given the induced Riemannian metric i*( , ). (This setup 1s often described
a little differently: we can begin with two Riemannian manifolds (N, { , )) and
(M, { , ), and consider isometric immersions of M in N, that is, immersions
it M — N which satisty i*( , ) ={ , ).

For every p € M, we can consider the tangent space M), as a subspace of
the tangent space Nj(,), by identifying M, with i.M, C Ni(p). Since all the
results of this chapter are going to be local ones, it will simplify our notation
considerably to assume that M is actually an imbedded submanifold of N, with
i M — N the inclusion map. We can then regard M), as a subspace M, C Np.
In the vector space N,, with the inner product { , ), the subspace M, has
an orthogonal complement M,* C N,, and we can use the decomposition
N, = M, ® M, to define two projections

TN, —» M, (the tangential projection)

L: N, > M,* (the normal, or perpendicular, projection)

with
X=TX+1X for all X € N,.

Now let X, € M, be any vector, and let ¥ be a vector field on M which
is everywhere “tangent to M”, meaning that Y; € M, for ¢ € M. Then



2 Chapter 1

Vx,Y € M, is defined, where V denotes the covariant differentiation in M
which is determined by the induced Riemannian metric i*( , ). If V' denotes
the covariant differentiation determined by ( , ) in the ambient space N, then

'x,Y is also well-defined; in fact, the value of V'y,Y depends only on the
values of Y along some curve ¢ with ¢/(0) = X,. The relation between these
two covariant differentiations is as nice as one could hope:

1. THEOREM. Leti: M — N be an immersion, where N has the Riemann-
ian metric { , ), and let V and V’ be the covariant derivatives for (M,i*( , ))
and (N, ( , ), respectively. If X, € Mp, and Y is a vector field on M which is
everywhere tangent to M, then

Vx,Y = T(V'y,Y).

PROOF. Let X,Y,Z be vector fields on N. Since V' is compatible with { , ),
we have (Corollary I1.6-7)

X(Y,Z)=(VxY,Z)+(Y,V'xZ)
Y(Z.X)=(VyZ,X)+(Z,VyX)
—Z(X,Y)=—(VzX,Y)— (X, V' zY).

We also have VxY — V'y X =[X, Y], etc., and in particular, V'xY + V'y X =
2V'yY — [X,Y]. Adding the above three equations, we thus obtain

¥) X(Y.Z)+Y(Z,X)-Z(X.Y)
=2VxY,Z) - ([X.Y]. Z) + ([X. Z].Y) + ([Y. Z], X).

This equation shows that (V'yY, Z) is completely determined by ( , ) (and is
essentially equivalent to our proof of Lemma II.6-8).

Now consider three vector fields X, Y, Z on N which are tangent to M at all
points of M, so that there are vector fields X.,Y,Z with 1‘*/\7([)) = X(p), etc.
On M we have the same equation () for the vector fields X, Y, Z, but with

'xY replaced by VgY. For a bracket term like [X.Y] we have [X,Y](p) =
[X.Y)(p) for p € M, by Proposition 1.6-3. We thus see that

(V'x,Y,Z,) = (Vx,Y.Zp)  forall Z, € M.

This is equivalent to the desired result.



The Fundamental Equations_for Hypersurfaces 3

2. COROLLARY. If ¢ isacurve in M and Y is a vector field along ¢ which
is tangent to M along ¢, then

DY D'Y
2 (5),
dt dt
Consequently, Y is parallel along ¢, in the sense of parallel that pertains to M, if
and only if D'Y/dt is always perpendicular to M. In particular, if Y is parallel

along ¢ in the sense that pertains to N, then it is also parallel along ¢ in the
sense that pertains to M.

PROOF. There is a unique operation V +— DV/dt, from C* vector fields V
in M along ¢ to C*® vector fields in M along ¢, with the properties in Propo-
sition I1.6-2. From the Theorem it is clear that V +— T(D'V/dt) has these
properties. ¥

Merely by combining this information with our previous formulation of other
concepts in the V setup, we can immediately deduce further results.

3. COROLLARY. A curve ¢ in M is a geodesic if and only if D’/dt(dc/dt) is
everywhere perpendicular to M. In particular, if a geodesic ¢ of N lies entirely
in M, then c¢ is also a geodesic in M.

PROOF. The curve c is a geodesic if and only if dc/dt is parallel along c. (The
second part also follows from the fact that geodesics are precisely the critical
points for the energy function.)

4. COROLLARY. Let M be isometrically immersed in R™ (with its usual Rie-
mannian metric). A curve ¢ in M is a geodesic if and only if ¢”(f)¢() 1s per-
pendicular to M, for all 7. In particular, a straight line in M is always a
geodesic.

PROOF. This is a special case of Corollary 3, for if R™ has its usual metric, then
V' is just the directional derivative, so D'/dt(dc/dt) = ¢"(t)cq). (In Chapter
11. 3B we obtained the result (for 71 = 3) by a completely different method.) <

Remark: Classically, the tangential component T(D'/dt(dc/dt)) = T(c"(t)) was
called the geodesic curvature vector of ¢. We will meet it again in Chapter 4.
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Having considered the tangential component T(V'y,Y), 1t is only fair that
we next consider the normal component _L(V’X,,Y). Notice that

L(Vx, [Y)= L(X,(f) - Y, + f(p)- Vx,Y) = f(p)- L(Vx, Y).

It follows from our general principal (Theorem I.4-2) that there is a well-defined
tensor field s, with s: My x M, — Mpl for each p € M, such that

5(X,. Yp) = L(V'y,Y)

for any vector field ¥ extending Y.

5. THEOREM. The tensor s is symmetric.

PROOF. Let X and Y be any extensions of X,,Y, € M, to all of N which are
tangent to M at all points of M. Then

L(V'y,Y) — L(V'y,X) = L(V'y,Y = V'y, X)
=L(VxY(p)—V'yX(p)
= L([X,Y](p)) =0,

since [X, Y] is also tangent to M at all points of M (Proposition L.6-3). €

By combining Theorems | and 5 we can now rewrite the decomposition
V/Xn Y = -L(V/X,, Y)+ -L(V/X,, Y)

in the following form:

The Gauss Formulas:
V’X,:Y = Vyx, Y +s(Xp. Yp).

where X, € Mp, and Y is a vector field
tangent along M.

Althougli we seem to be dealing with a single formula here, we will obtalll a
set of formulas when we choose a coordinate system x'.....x" on M and let
Xp = 8/0x"], and ¥ = 3/dx7. Consequently, we will adhere to this classical
terminology; it should be compared to the (likewise classical) nomenclature of
the next result.
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6. THEOREM. Let M be isometrically immersed in », and let R and R’
denote the curvature tensors of M and N, respectively. Then for all X,,,Y,, Z,,
W, € M, we have

Gauss” Equation (Gauss’ Theorema Egregium):

(R'(Xp, Yp)Zp, Wp) = (R(Xpp, Yp) Zp, W) + (s(X}p, Z,p), 5(Yp, Wp))
- (S(Yp’Zp)’S(Xp’Wp))

PROOF. Extend X,,Y,,Z,, W, to vector fields X, Y, Z, W which are tangent
along M. Then the Gauss formulas yield

Y x(V'yZ)=V'yx(VyZ) + Vx(s(Y, Z))
=Vy(VyZ)+s(X,VyZ)+ le(S(Y, Z)),

and similarly

() Vy(V'xZ) =Vy(VxZ)+s(Y,VxZ) + V'y (s(X, Z)),
as well as
(2) Vix.yriZ =VxrnZ +s([X, Y], Z).

Substituting (1), (1"}, (2) into the formula R'(X,Y)Z = V'xV'yZ - V'yV'x Z —
V'ix,¥1Z, and noting that W is orthogonal to any term s( , ), we obtain

3) (R(X,Y)Z, W)= (R(X,Y)Z, W)+ (Vix(s(Y,Z)) = V'y(s(X, Z)), W).
On the other hand, since {s(Y, Z), W) = 0 we have

4) 0= X((s(Y,Z),W)) = (Vixs(Y,Z), W)+ (s(Y,Z),Vx W)
= (Vixs(Y,Z), W)+ (s(Y,Z),Vx W + s(X, W))
= (Vixs(Y,Z),W) + (s(Y, Z),s(X, W)),

since Vxy W is orthogonal to s(Y,Z). The desired result is now obtained by
substituting (4), and the similar result with X and Y interchanged, into (3). <

Recall that if P C M, is a 2-dimensional subspace of M, we define the
sectional curvature K(P) as (R(X,Y)Y, X) for orthonormal X,Y € P. We
will let K'(P) denote the corresponding sectional curvature in N.
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7. COROLLARY (SYNGE’S INEQUALITY). Let M be isometrically im-
mersed in N, and let y: [¢,b] - M be a curve in M which is a geodesic in N
(and hence also a geodesic in M, by Corollary 3). Then for all 2-dimensional
P C M, with y'(t) € P we have

K(P) < K'(P).
In particular, if M is a surface, then for all p = y(r) we have
K(M,) < K'(M,).

Moreover, in this case equality holds for all p = y(¢) if and only if M, is
parallel along y, in the sense that pertains to N.

PROOF. Assume y is parameterized by arclength. Let X, = y'(r) and let

Y, € P be a unit vector perpendicular to X,. Applying Gauss’ equation with
Z, =Y, and W, = X, we obtain

K'(P) = K(P) + (s(Xp, Yp), s(Xp, Yp)) — (s(Yp, ¥p), s(Xp, Xp)).

If we let X be the vector field X(¢t) = y'(¢) along y, then X is parallel along y,
so we have 0 = V'y X. This implies that

0=L(VxX)(p) =s(Xp, Xp),

which gives the desired inequality.

In the case of a surface, we choose X(¢) = y'(¢) once again, and we let Y (f)
be a unit vector in M,y which is perpendicular to X(¢). Now Gauss’ equation
gives

K/(Mp) = K(Mp) + (s(Xp, Yp),s(Xp, Yp)) — (s(Yp, ¥p), s(Xp, Xp)).

Once again we have s(X,, X,) = 0, so equality holds for all p if and only
if s(Xp,Y,) = 0 for all p. Moreover, on the surface M, the vector field X is
parallel along y, while Y is a unit vector field which makes a constant angle

with X along y. It follows that Y is also parallel along y, in the sense that pertains
to M. Therefore
0=VxY =T(VxY).

Since
s(Xp, Yp) = L(V'xY(p)),

this shows that s(X,, Y,) = 0 for all p if and only if V'xY(p) = 0 for all p; the
latter condition means that M, is parallel along y.
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Remark: We can state the slightly more precise result for M a surface: K(M,) =
K'(M,) at a particular point p if and only if VixY(p)=0.

As another application of Theorem 6, we give a new proof of an old result:
If W C N, is 2-dimensional, and @ C W is a sufficiently small neighborhood
of 0, then K(W) is the Gaussian curvature at p of the surface M = exp(0).
Clearly we just have to show that 5(X,,Y,) = 0 for X, Y, € My, so we just
need to show that s(X,, X,) = 0 for all X, € M. But there is a vector field X
tangent to M with X = ¢’ along the geodesic ¢(1) = exp(tX,) of N. Then

"y X(p)=0,s0 s(Xp, Xp) =0. :

The proof of Corollary 7 has probably already explained why Theorem 6
is referred to in the singular, as “Gauss’ equation”: when M is 2-dimensional
and x'. x2 is a coordinate system on M, essentially the only interesting case of
Theorem 6 occurs for X, = W, = 8/3x'|, and ¥, = Z, = 3/3x2|p, so that
we really are dealing with a single equation. This equation actually occurs in
Gauss’ paper, as we shall soon see, when we specialize our results somewhat.

For the remainder of this chapter we consider the more specific situation
where M is a hypersurface in N, that 1s, a submanifold of codimension 1; we
will return only much later to the more general situation. In the case of hyper-
surfaces we can locally choose a unit normal field for M: on a neighborhood U
of a point p € M we can choose a vector field v such that {v,v) = 1 and
v(g) € M,* for all ¢ € U; in fact, there are only two possible choices for v.
Since v is a vector field of N, defined along M, the symbol V'y, v makes sense
for X, € M,.

8. THEOREM. Let M be a hypersurface in N, and let v be a unit normal
field on a neighborhood of p in M.

(a) For all X, € M, we have
V/va [S Mp.

(b) If Y is a vector field tangent along M, then we have

The Weingarten Equations:
(Vx,v, Yp) = —(v, Vx5, Y) = —(v,5(Xp, ¥p)).

(c) Consequently,
(V'x,v, Yp) = (Xp, V'y,v).
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PROOF. (a) Since (v,v) =1 along M, we have
0 - Xp((v’ V)) = 2(V’X/)V, V),
which means that V'x,v € M, since M, is 1-dimensional.
(b) Since (v,Y) = 0 along M, we have
0 = Xp((v’ Y)) - (V/va’ Y) + (V, V’Xp Y)’
which implies the first equality in the Weingarten equations. The second equal-
ity comes from the definition s(X,,Y,) = J_(V’Xp Y), and the fact that L(V'y,Y)

is a multiple of v.
(c) follows from (b) and symmetry of s. ¢

The reader may recall that the “Weingarten equations” have already ap-
peared in Volume II, pg 124. The relationship between those equations and
the ones in Theorem 8, as well as the reason for choosing the notation s(X,, ¥,),
may come out in the following special case of Theorem 8.

9. COROLLARY. Let M" be a hypersurface in R"*! and let v be a unit
normal field on a neighborhood of p in M. Then for all X,,Y, € M, we have

(X, Y,) = 11(X,, Y,) - v(p),

where I1(X,, Y,) is the second fundamental form of M defined for the choice v
of unit normal field, namely

(X, Y,) = —(dv(X,), Y,).

(Here dv(X,) is interpreted as follows [pg. IL.1211.]: Since we can think of v
asamapv: M — S"7! C R”*! we have the vector-valued differential form
dv: M, — R™! and dv(X,) € R"*! is to be moved back to a parallel vector
in Mp; equivalently, dv(X,) denotes v, (X)) € S”_lv(p) moved back to a parallel
vector in M)

PROOF. Since V'y,v is now simply the directional derivative of v, we have
V/X,,V = [Xp,(W)], = [dV(Xp)]p = dV(Xp)»
in the notation we have just adopted. So the Theorem says that

(v.5(Xp, Yp)) = —(dv(Xp), Yp)
= 1I(X,, Yp),

which is equivalent to the desired result. ¢
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The reader should now be able to see that the Weingarten equations of The-
orem 8 reduce to equations (a)—(c) on pg 11.124 for a surface in R3. More pre-
cisely, the equation (V'x, v, Yp) = —(v,5(Xp, ¥p)) establishes the relationship
between s and 11, and the equation (v, V'x,Y) = (v, 5(Xp, Yp)) then reduces to
equations (a)—(c). One further point is worth checking: our present proof that s
is symmetric is essentially equivalent to our second proof, in Volume II, that II
is symmetric.

10. COROLLARY. Let M be asurface immersed in R?, and let X,,Y, € M.
Then

(R(X,, Yp)Yp, Xp) = (X, Xpp) - 1I(Y, ¥)p) — (X, Yp)]z.

In particular, if (x,y) is a coordinate system on M, and we introduce the clas-
sical notation

{ ,)=I=de®dx+Fdx®dy+de®dx+Gdy®dy
H=/dxQ®dx+mdx®@dy +mdy @dx +ndy ®dy,

then
Riri2 In — m?

G- PTG

where K(p) is the Gaussian curvature of M at p.

(p) = K(p),

PROOF. The first equation follows from Theorem 8, Corollary 9, and the fact

that R’ = 0 for R?. For the second equation we recall the formulas on pp. 11.190
and 129. <

As we have already noted in the proof of Proposition 11. 4-7, when we expand
Rj>12 using formula (¥x#) on pg. I1.188, the second equation in Corollary 10
is exactly equivalent to Gauss’ equation for K. The reader probably suspects
that our-more_general Gauss equations can be used to obtain generalizations
of the Theorema Egregium to higher dimensions. However, we will defer all
such considerations until after we have studied surfaces in more detail. For the
present we wish to consider only one more result, which depends on a definition
motivated by Corollary 9. If M C N is a hypersurface, we produce a svmmetric
tensor 11 on M by defining

5(X,.Y,) = (X, Yp) - v(p):

naturally, the sign of 1 depends on the choice of the local unit normal field v.
Some authors call s the second fundamental form of M C N, while others
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reserve that name for II. The tensor II merely gives the length of s up to sign;
but since it is real-valued, rather than M,* valued, the symbol Vz, II makes
sense. Indeed, we have defined Vz,7 for any tensor field 7 (see Volume II,

pp- 2291L).

11. THEOREM. Let M be a hypersurface in N, and let v be a unit nor-
mal field on a neighborhood of p in M, with corresponding II. Then for all
X, Yp, Zp € My, we have

The Codazzi-Mainardi Equations:
(R/(Xp’ Yp)Zp’ V(P)) = (VX,, H)(Yp, Zp) - (VY,,H)(Xp, Zp)-

Remark: This formula gives us the normal component of R'(X,,Y,)Z,, while
Gauss’ equation essentially gives us the tangential component.

PROOF. We begin with the equations derived in the proof of Theorem 6:

1) Vx(V'yZ) =Vx(VyZ) +s(X,VyZ) + V'x(s(Y, Z))
(1) Vy(VxZ)=Vy(VxZ) +s(Y,VxZ) + V'y (s(X, Z))
(2) Vix,r1Z =Vix,nZ +s(X,Y],2)

= V[X,Y]Z +s(VxY,Z)—s(VyX,Z).
From these we see that the normal component of R'(X,Y)Z is given by

(3) normal component of R'(X,Y)Z =
[LV'x(s(Y,Z)) —s(VxY,Z) — s(Y,Vx Z)]
C LV (s(X, Z)) — s(Vy X, Z) — s(X.Vy Z)].

On the other hand, since
<4> S(Y,Z):II(Y,Z)V,

we have

(Y, Z)) = XY, Z)) - v+ I(Y, Z) - Vxv,

and consequently

(5) (Vix(s(Y,Z)),v) = X(II(Y, Z)),
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since V'yv is tangent to M. Using (3), (5), and the definition (4) again, we obtain

(RI(X,Y)Z,v) = [X(II(Y,Z)) - I(VxY,Z) - II(Y, Vx Z)]
—[YI(X,2)) - 1(Vy X, Z) - II(X, Vy Z)].

The result now follows from* Corollary I1.6-5. &

It will be useful to examine the form which our fundamental equations take
when the ambient space N has constant curvature Ko. Then by Lemma I1.7-18
the curvature tensor R’ of N satisfies

(1) (R'(X,Y)Z,W) = Ko[{X, W) - (Y. Z) = (X, Z) - (Y, W)]

l

) R(X.Y)Z = Ko[{Y. Z)X — (X, Z)Y).

12. COROLLARY. Let N have constant curvature Ko. Then for M 1somet-
rically immersed in N we have

Gauss’ Equation:

(R(Xp,Yp)Zp, Wp) + (s(Xp,Zp),s(Yp, Wp)) — (s(Yp, Zp),s(Xp, Wp))
= KO[(XP’ Wp) : (Yp’ Zp) - (Xp’ Zp) : (Yp’ Wp)]~

And if M is a hypersurface we have

The Codazzi-Mainardi Equations:
(Vy, ID(Yp, Zp) = (Vy,1)(Xp. Zp).

PROOF. The first result follows from Theorem 6 and equation (). The second
follows from Theorem 11 and equation (2), which shows that R'(Xp, Y)Zp 1s
tangent to M. &
\

*This Corollary holds also for tensors of type (15); see also Problem 1.
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We have carried our analysis of submanifolds as far as we presently wish to
go. However, it is also important that we indicate how things work out when
we use moving frames. Before doing this, we will first examine the classical
tensor analysis treatment of submanifolds. This is included mainly for the sake
of completeness, and because you may be unfortunate enough to encounter
it again in a classical work which you need to consult. If you are inclined to
skip this part, I cannot in good conscience caution you against such a course of
action, except to say that reading it must be good for you, because you certainly
won't like it.

We will simplify things slightly by beginning with hypersurfaces from the out-

set. We consider a coordinate system y',..., y"*! on N, with
n+1
(,)= Y gupd®ed’,
o, f=1
and let x', ..., x" be a coordinate system on a hypersurface M, so that

(,)=Zgijdxi®dxj on M,

i,j=1

for certain functions g;;. We adopt the convention that the indices i, j, etc.,
range from 1 to n, while a, B, etc., range from 1 to #n + 1, even in summation
signs, so that 3, , for example, denotes _;_, . It is easy to see that
o 9,8
Zglaﬂai.a—y-—.Zgij on M.
axt ox/

o, B

It will be convenient to let y® also denote the restriction of y* to M. Then we
can use the symbol y*; = dy®/dx’, introduced on pg IL.211, for the compo-
nents of dy* on M, and we can write

W Zglaﬂya:i}'ﬂ:j = &ij on M.
B
If v=>) v¥.3/8y* is a unit normal field, then we also have
24
@ Z glaﬂ,\'a:i\)ﬂ =0,
B

(3) Zg’aﬂv“vﬂ =1
N
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We now wish to take the covariant derivative of (1) on M. Notice that y*,; y?.;
is the (i, j) component of the tensor dy* ® dy? on M; on the other hand, each
g'qp 1s just a function on M. Writing

g'ap 3g'ap 0y” 0g'up 7y
dxk » ; ay7 axk Z 8y3’ ke

and using Proposition 1I.5-2, we obtain from (1)

dg’
5 ‘;ﬂ yvP v + Zg’aﬂ(y“;ikyﬂ;j + Py = gijn
a.By Y o.B
=0, by Ricei’s Lemma (Proposition I1.5-3).

If we write this equation with i and k interchanged, the term

Gy can be replaced by
a.By a.By

A similar replacement can be made when we rewrite the original equation
with j and k interchanged. Adding the two equations so obtained, and sub-
tracting the original, we get

Zgaﬂy k}’ ij + Z [aﬂ V yy;k =0,

o, B,y

where [ , ]’ indicates the Christoffel symbols for the y coordinate system. This
can also be written as

<4> Zglaﬂyﬂ;k( ! l] + Z F po th}’ ) = 07
o, B .

which shows that the expression in parentheses is the @ component of a vector
perpendicular to M. As a matter of fact, a calculation (Problem 2) shows that
it is the coefficient of 3/3y* in the expression for V'y 5. ;9/0x" — Va/ax,a/av
Consequently, (4) is equivalent to Theorem I, and despite the ugliness of the
equations involved, its derivation is clearly closely related to that of Theorem 1.

Since Y, v¥ - 3/3y® is a unit normal field, and Mt has dimension 1, equa-
tion (4) implies that

(5) ¥ ,,+Zr’“ 3P0 = 10"
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for certain functions II;;; multiplying by 3 5 g'p v8 and using (3), this can be
written

(6) I = Zgaﬂv yij + Z [po. B] lya;jvﬂ
0,6,8

This shows that the II;; satlsfy the transformation rule for a covariant tensor of
order 2 on M, since the y*;; and y®,;y°.; do, and since the other terms don’t
involve the coordinate system x but only the coordinate system y on N (at the
same time we see that the whole right side doesn’t even depend on y). It is also
clear that 11;; = I1;;. Equation (5) is equivalent to the Gauss formulas.

We next take the covariant derivative of equation (2) on M (now both g'sg
and v# are functions on M). We obtain

a !
Zglaﬂ(yaliivﬂ +}’a;i‘)ﬂ;j) == Z ya;i}’a;jvﬂ Efyiﬂ

o, B o, B0
=— > 3%y v (wo, B + [Bo,a])
o, B0
Then (6) gives
IIU = Zgaﬂy IV o Z [Ba, p] l}’a;jvﬂy
o B p.0.B
or

_Ilij = Zg/aﬂya;i( b + Z F/pay Y )
o,B
which can also be written as

(7) UTEDY glaﬂya;i(z Vﬂ:pyp;j)y
o, B o

where v8., now denotes the covariant derivative, in N, of the vector field with com-

81)5 ,
ﬂ ¢
P, = e E ey,

Equation (7) is clearly equivalent to one part of the Weingarten equations,
namely —(v, s(Xp, Yp)) = (V'x,v. Yp). If we treat (3) in a similar manner, we
end up with

(@) Z gapV” (Z Vﬂip."p;j) =0
o, B 4

ponents v so that
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which is equivalent to the fact that V'x,v € M,
Since (8) shows that we can write

(9) Z vﬂ;py”;j = Z Aj-‘yﬂ;k for some functions Aj-‘ on M,
P k

equation (7) gives

_Hij = Z glaﬂya;iyﬂ;kAj'(
o, B.k

=Y eadl by,
k

$O
Ar =" -I,e",
l}
and hence from (9)
> ovPorti == ey,
p I,m

or equivalently

(10) B3 T v = = Mg,
0,0 I,m

We return to equation (5), equivalent to Gauss’ formulas. We can apply
Ricei’s identity (Proposition II. 5-4)

Misjk = hisj = 9 AmR7ijk = D Amg™ Rhijk
m m,h

to A; = y%,;, obtaiming
o Gmhp 0 o
Y m& hijk = Y ijk — YV sikj-
m,h

Computing the 3% from (5), and using (5) and (10) in the result, we obtain
finally

Zya;mth[Rhijk — (g Mg — Mg L)) — v (ke — Wik )

m,h

/ . s A
- Z R p6a 3’y ¥ % = 0.
0£,0,A
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Multiplying by Y, g’aﬂyﬂ;[ orby >, 8up VB, we get

(11) Riju = (Mgl — Myl + ) Rlapysy®iyP 37 ay’
a,B,v,8
(12) Wi — Wiy = Y Rlapysy®ir”jy un”.
a,B.v.8

Equations (11) and (12) are equivalent to Gauss’ Equation and the Codazzi-
Mainardi equations, respectively. Whew!

When we turn to the method of moving frames, we find ourselves in a situ-
ation completely different from the mass of calculations in which we have just
been mired. Although the moving frame method will not have the geometric
appeal of the V theory, it is far superior computationally. Not only are all the
equations short and simple, but all the results follow naturally, almost without
thought, from the structural equations. Indeed, everything happens so quickly
that the real problem is recognizing a result when it appears.

Consider first an orthonormal moving frame Xi,..., X, on an open subset
of M. Recall that the dual 1-forms 6% are defined by Gi(Xj) = 81"., and that

there are unique 1-forms wj’:, the connection forms, satisfying the two equations

(2) do' = — Z wi Ao (The first structural equation).
k=1

The curvature forms Q; are then defined by
h
i i k i . ot
(3)  dw;=- Z wp A 0; + Q; (The second structural equation).
k=1
The relationship between w]’ Qj and V, R is given by

n
(+> VX/\A/j = ijl(Xk)Xl or (VXXJ,X,) :wjl(X)

i=1

(3) R(Xk. XX; =Y QUX. XDXi or (R(X,V)Xj, Xi) = Qj(X.Y).

i=l
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Now let us consider an orthonormal moving frame Xj,..., X,,, defined on
an open subset of N, with the property that Xp,..., X, are tangent to M at
points of M, and consequently Xp1, ..., Xm are normal to M at points of M;
such an orthonormal moving frame 1s said to be adapted to M. An adapted

orthonormal moving frame gives us an orthonormal moving frame Xp,..., Xy
along M, with corresponding forms o', wj’:, Q; (i,j < n). We also want to
consider the corresponding forms for the entire moving frame Xp, ..., X; on N;
these will be denoted by ¢%, \//g, \I’%‘. We adopt the convention that 7, j, etc.,
always range from | to n, while @, B, etc., always range from 1 to m, even
in summation signs, so that };, for example, means Y ;_;; it will also be
convenient to use F, s, etc., for numbers that range from n 4 1 to m.

Now the forms ¢¢, \//g, \I’%‘ can be restricted to TM (that 1s, to tangent vectors
of M). Clearly

P =06 onTM i<n
" =0 onTM r > n.

To obtain some information about the forms 1///';‘ on TM, we look at the first
structural equation,

dp™ == Y5 ne”.
Y

Restricting to TM we obtain

(a) do’ = — Z \//,’; A ok onTM i<n
k
(b) 0="Y 6" ry; onTM r>n.
k
Recall that a)j’: were the unique forms satisfying (1), (2). Since yg = —1//5. equa-

tion (a) therefore sliows that

(c) \//j' = a)j': onTM i,j<n.
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This equation already contains some information! In fact, equation (4) shows
that

(Vx Xj, Xi) = 0j(X) = ¥ (X) = (Vx Xj, Xi)  for X € TM;

this is exactly equivalent to Theorem 1, for it shows that V' Xj(p) has the same
inner product with every element of M, as Vx X;(p) € M,,.

Next, we look at the forms y; = —yk on TM, for k < n < r. Equation (b)
tells us that they satisfy the hypothesis of the following Lemma.

13. LEMMA (CARTAN’S LEMMA). If Al .. A" are (C®) linearly inde-
pendent 1-forms on a manifold M (of dimension n’ > n), and wy,..., s are
(C*) 1-forms on M satisfying

h
() Z)Li A i =0,
i=l1

then there are unique (C%) functions f;; on M such that

h
pi=_ fiihs
j=1

MOreover,
fij = Jii-
Remark: This result (or at least the corresponding result for vector spaces) has

already been given in Problem L.7-11.

PROOF. In a neighborhood of any point we can choose (C*°) 1-forms At
A" so that Al,... A" are everywhere independent. Then there are (C*°) func-
tions f;; (i <n,j < n')ywith

n/
=y fid.
j=1
Equation (x) implies that
n n/ . . . n . .
0= fuhiabM = Y (= oM AN+ Sk Ak
i=1 j=1 I<i<j<n i=1 j>n

Since the Al AA/ for i < j are linearly independent, we have fi; — fj; =0 for
i,j<nand fij =0for j >n. ¢
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Applying Cartan’s Lemma to the y;, we conclude that there are unique
functions sj; on M satistying

(d) Yl = "‘ﬁrj = Zs,-’jOi onTM r > n,
i

Equation (4) now shows that
(Vo X;, X)) =v](X) =s;  r>n

and hence
(V/X,-Xk,Xr>:(V/Xka,Xr> r > n.

This is basically Theorem 5, asserting the symmetry of s, which in our present
notation can be defined by setting

© s, Xe) = D WX - Xr = D s X,

and extending s by linearity. It should be noted that this definition of s involves
a choice of a moving frame; when one is developing everything from the moving
frame approach, a little calculation (Problem 3) must be supplied to show that
the definition of s is really independent of the choice. Equations (¢) and (d)
together are equivalent to the Gauss formulas.

Now let us look at the second structural equation

dyg ==Y Yy Ay} + V5.
¥
Restricting to TM we obtain, for o, 8 =i, j < n,
6)  do! =—Zw;;ijf+Z¢;A¢; +W¥  onTM i j<n.
k r
Comparing with (3) we obtain
(8) Vi=Ql - > Y/ Ayl onTM.

Then equation (5) gives
(R(X,Y)X;, X;) = Wi(X,Y) = (R(X,Y) X}, X;)
= D WYY ) = Y] (V)Y (X))
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Since we have, tor example,

S YT OY[Y) =) (s(X X), Xp) - (s(XG, V), X)

= (s(Xi, X),s(X;,Y)),

it follows that (g) is exactly equivalent to Theorem 6 (Gauss’ Equation).
If we instead choose & = r > n, and B = j < n, we obtain

(h) d¢,r=—2¢;Aw;—Z¢;A¢;+w; on TM.

As before, we now restrict ourselves to the case m = n + 1; then Xp1q Is a unit

normal field on M. Notice that the equation wn+l = —lﬁ"H gives

(Vx Xntt, Xj) = Wi (X)) = =97 (Xp) = = (X, s(XG, X)),
which are the Weingarten equations. Equation (h) takes the form

dwn+l an+l /\w + \pn+l

A little work (Problem 4) shows that this is equivalent to the Codazzi-Mainardi
equations.

SUMMARY
' =6" on TM
¢" =0 on TM
Consequences V) = o] on TM ............ (Theorem 1)} Tpe
of the first . Gauss
structural Y= Zsij’ on TM ............ (Theorem 6) | formulas
equation .
Sij = Sji
\I’ﬂ. = Q’j — Yy Ay; on TM .. Gauss’ Equation
Consequences r
of the second |For m =n +1:
structural ; o :
e;l:]iltlil;i \I’;-'H = dlﬂ}'“ + Syt a Wi Codazzi-Mainardi
i Equations
on TM
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Although the derivation of the fundamental equations was so much easier in
terms of moving frames than in terms of tensors, the resultant equations have
the same disadvantage as the moving frame treatment of connections itself—our
equations are not “invariant”, they are merely a set of equations which hold for
cach choice of adapted orthonormal moving frame. Moreover, it is very hard
to get any geometric feel for the equations—the tensor form of the equations
seemn much more geometric, especially Gauss’ equation. As one might guess,
an invariant description of the moving frame equations can be obtained by con-
sidering an appropriate principal bundle —the “bundle of adapted orthonormal
frames”. In Chapter 7 we will actually consider this construction in detail, even
for submanifolds of higher codimension, but we will do this mainly for the sake
of completeness, since the results which we will derive from this construction
will also be obtained in other ways. On the whole, 1t seems uneconomical to
construct the elaborate machinery of a principal bundle just to have a gadget
on which we can give an invariant formulation of the fundamental equations
for submanifolds, especially since the invariant equations are even more abstract
and ungeometric. It is much easier, and more satisfying, to state these equations
in terms of tensors down on the submanifold itself. On the other hand, when
it comes to using these equations to prove theorems about submanifolds, the
equations in terms of moving frames will almost always prove to be superior.
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ADDENDUM

AUTO-PARALLEL AND
TOTALLY GEODESIC SUBMANIFOLDS

The material of this section, besides being of interest in its own right, will
play an important role on several occasions later on. We will not require any
tools not already developed within the chapter, even though we will be dealing
with submanifolds of arbitrary codimeusion, and even with manifolds whose
connection does not come from a Riemannian metric. ’

Let N be a manifold with a connection V', and let M be a submanifold of N.
We say that M is auto-parallel if the parallel translation in N along a curve ¢
in M always takes vectors tangent to M into vectors tangent to M. For example,
a straight line or a plane in R? is auto-parallel.

14. PROPOSITION. A submanifold M of (N, V') is auto-parallel if and only
“if V'xY is tangent to M whenever X and Y are.

PROOF. We know from Proposition IL.6-3 that
\4 lim + (5,1, Y,
x, Y = Jim E(Th chy — 1p),

where ¢ is a curve with ¢’(0) = X, and 13 is parallel translation along ¢ from
¢(0) to ¢(h). This makes it immediately clear that if M is auto-parallel, then
V'x, Y is tangent to M if X and Y are.

Conversely, suppose V', Y is tangent to M whenever X and Y are. Let ¢ be
a curve i1 M and let V be a parallel vector field along ¢. Choose a coordinate
system x!, .. xm x™ for N such that x" =0on M forall r > n. If
Vi € Ny 15 given by

m
Vi=D v 05| ()
a=1 c
then we have (pg. 11.233)
dv? (1) de® (1)
i = Y (¢ B .
M 0=—1 + )~ Taple’ o)

B
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Now ¢’ (t) = 0 for ¥ > n, since ¢ lies in M. Moreover, if 7, j < n, then the
vector
a y 0

4 —
2 ox i gx7
ax Y

is tangent to M by hypothesis, so we must have I';; = 0 for r > n. So for
y = s > n, cquation (1) becomes

d(t) e de)
dr Z dt

L7 (c()v' (0).
r=n+l i=1

This set of m — n equations for the m — n functions v* has a unique solution for
a given initial condition. The solution with all v*(0) = 0 is clearly just v*(f) =0
for all s > n. In other words, if Vo is tangent to M, then so are all V;. D3

15. COROLLARY. If M is an auto-parallel submanifold of (N, V'), then
R(X, Y)Zpe M, forall X,,Y, Z, € M,.

PROOF. Use the definition
R(X,Y)Z=V'yxV'yZ -VyV'xZ -V'ix 11z

(and Proposition 1.6-3). «

In the particular case where the connection V’ on N is the unique symmetric
connection compatible with a Riemannian metric { , ) on N, we can charac-
terize auto-parallel submanifolds M C N in a different way.

16. PROPOSITION. If (N, { . )) is a Riemannian manifold, then a subman-
ifold M C N is auto-parallel if and only if the sccond fundamental form s of M
is zero.

PROOF. By definition. s is zero if and only if V'xY is tangent to M whenever X
and Y are. So the result follows from Proposition 1.

Notice that whenever M is an auto-parallel submanifold of (N. V'), we can
define a connection V on M by letting VxY = V'xY for X and Y tangent
to M. This connection V on M is called the induced connection on M. (In the
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Riemannian case, V clearly coincides with the connection M has as a Riemann-
ian submanifold.) If ¢ is a curve in M and V is a vector field along ¢ which is
everywhere tangent to M, then the covariant derivative DV /dt along ¢ which 1s
determined by V is exactly the same as the covariant derivative D'V /dt along ¢
which is determined by V’: for the proof we just apply Proposition II.6-2, which
essentially defines DV /dt. In particular, if V is parallel along ¢ with respect
to the connection V in M, then it is also parallel along ¢ with respect to the
connection V' in N.

Auto-parallel submanifolds can also be characterized in yet another way. A
submanifold M of (N,V’) is called geodesic at p if every geodesic y with
y(0) = p and y'(0) € M, remains in M on some interval (—¢,¢). It is called
totally geodesic if it is geodesic at every point; it is easy to see that M C N i1s
totally geodesic if and only if every geodesic in M is also a geodesic in N.

17. PROPOSITION. Let M be a submanifold of a manifold (N, V).
(1) If M is auto-parallel, then M is totally geodesic.
(2) If M is totally geodesic, and V' is symmetric, then M is auto-parallel.

PROOF. (1) Let ¢ be a geodesic of N with ¢/(0) € M,,. Let ¢ be the geodesic
in M, with respect to the induced connection V, satisfying ¢'(0) = ¢’(0). To
prove that an interval of ¢ lies in M, it certainly suffices to prove that ¢ = ¢
along some interval containing 0. Now by the definition of a geodesic, dc/di 1s
parallel along ¢ with respect to V. As we have already noted, this implies that
d¢/dr is parallel along ¢ with respect to V'. Thus ¢ is a geodesic in N. Since
¢'(0) = ¢’(0), the geodesics ¢ and ¢ must coincide on their common domain.

(2) In a neighborhood of a point p € M we can choose a coordinate system
xbooo xm xmt . x™ for N such that x” = 0 on M for r > n. Let ¢ be a
geodesic with

n

: 9
c0)=p and '(0)= Za'W e M,.
i=1 . p

Then by hypothesis we have c¢(t) € M for sufficiently small . Now ¢ satisfies
(pg. 1II.246)

d?e? y de® deB
o Zﬂ: Fape) G =0
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For y = s > n we have

" det ded
Z I (C(t))ﬁd—t =0 for small ¢.

ihj=1

Letting ¢ = 0, we obtain

n
Z Fisj(p)aiaj =0.

ij=1
Choosing ¢’ = 1, all other al =0, we get
(a) 0=T7(p)
Choosing @' = a’ =1, all other ak =0, we get
(b) 0 =T%(p) + T5(p) + Th(p) + Tj;(p) = T (p) + Tji(p).

Using symmetry of the I'’s, we find that I'j;(p) = 0 for all £, j. This is true for
all p € M, so we find that V'yY is tangent to M if X and Y are. The result
then follows from Proposition 14. «¢

Every n-dimensional plane P C R™ is clearly totally geodesic. (Conversely,
if M C R™ is a totally geodesic submanifold, and p is a point of M, then M
must clearly contain a neighborhood of its tangent space M, C R™: soif M 1s
a connected n-dimensional totally geodesic submanifold of R™, then M must
be part of an n-dimensional plane P C R™.) It is just as clear that if we give
S™ its standard Riemannian metric, then any n-sphere S C S™ is totally
geodesic. Now let us consider the Riemannian manifold (N, { , )) mentioned
on pg. I1.301, with constant curvature —1: the manifold N 1s

N = {a cR™: Z(a“)2 < 4},
a=1

and the components gqg of { , ) with respect to the usual coordinate system

1 .
x',...,x™ are given by

Sup

m 2’
1
oa=1

g =
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Let M C N be
Mz{aeN:a"H:---za'"ZO},

The formulas for the I''s on pg 11.299 show that I'; = 0 on M whenever
i,j < nandr > n, which means that V'xY is tangent to M whenever X
and Y are. So M 1s a totally geodesic submanifold of N, by Propositions 14
and 16. Smce the metric { , ) is radially symmetric around 0, it is clear that we
can find a totally geodesic submanifold M of N with My being any n-dimen-
sional subspace of Np. The same is true at any other point p € N, because the
fact that N has constant curvature implies that p has a neighborhood isometric
to a neighborhood of 0 (Corollary I1. 7-13); in fact, since N is simply-connected
and complete, there is actually an isometry of N onto itself taking any point p
to 0 (Problem 5).*

The possibility of finding so many totally geodesic submanifolds is very ex-
ceptional:

18. THEOREM. Let (N, { , )) be a connected Riemannian manifold of di-

mension m > 3. Suppose that for all p € N and all 2-dimensional subspaces
P C N, there 1s a totally geodesic submanifold M of N with p € M and
M, = P. Then N has constant curvature.

PROOF. Each submamifold M 1s auto-parallel, by Proposition 17, so Corol-
lary 15 shows that
(R'(Xp, Yp)Zp, Wy) = 0

for X,,Y,.Z, € M, and W, € M,L. Since M, can be any 2-dimensional
subspace P C M,, we see that

N (RI(Xp, Yp)Xp. Wp) =0 for orthonormal X,,Y,, W, € N,.
Applving (I) to X,, Y,, W, with

)7,, = (cosa)Y, + (sina) W,

Wp = (—sma)Y, + (cosa)W,.
we obtain

=sina cosa[(R'(Xp. Wp) Xp . Wp) — (R'(X,.Y,) X, Yp)]
+ cos? a(R'(Xp, Yp) Xp . Wp) — sin® a(R'(X,, Wp) X,. Y,)
= sina cosa[(R'(X,. Wp)Xp. W,) — (RU(X,. Yp) X, Yp)] by (1).

*NMore detatled information about the manifold N will be found in Chapter 7, Part A.
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Thus (R (Xp, Wp) X, Wp) = (RU(X,, Yp)X)p, Yp) for all orthonormal X,,Y,,
W,, which implies that all sectional curvatures at p are equal. Since this is true
for all p, Schur’s Theorem (II.7-19) shows that M has constant curvature. o

It seems rather clear that if one takes a Riemannian manifold (N, ( , )) “at
random”, then it will not have any totally geodesic submanifolds of dimension
~ 1. But I must admit that I don’t know of any specific example of such a
manifold.



28 Chapter 1

PROBLEMS

1. (a) In Corollary II.6-5, each A(p) is regarded as a map My x -+ x Mp —
M,. If we instead regard each A(p) as a map M, x --- x Mp x Mp* — R,
show that

(Vx, A)(Y1(p), ..., Yi(p), w(p)) = Vx, (AN, ..., Y, w))

k
- Z A (p)s- -, Vx, Y, Y (p),w(p) + A (), ..., Yi(p), Vi, 0).
i=1

(b) If A 1s a tensor field of type (1;), where each A(p) is regarded as a map
M, x - x My x Mpy* x -+« x Mp* — R, show that

(Vx, (Y1 (p), ..., wi(p)) = VX,,(A(Y1,~ » 1))

—ZA( VX,, l""’wl(p))

+ ZA(Yl(p),...,VX,,w,-,...).
i=1
Consider in particular the cases / =0 and k = 0.

(c) If we instead regard each A(p) as a map from M, x - x M, to the set of
maps M,* x --- x M,* — R, then

(Vx, A(Y1(p), ..., Yi(p) = Vx, (A(Yr, ..., Yi)
k
=Y AMN(P), s Vi Vs i)

i=1
2. Consider the situation on page 12. Writing

3y 0
8‘(' Z xt dye zp:) ZIW’

and similarly for 9/ dx’, show that

. a
V' ayaei 0/3x" = Z(Z oo ¥%i) )3‘01 +Z(Z) gy )—E

4 0,0

Using

e
k

verify the assertion near the bottom of page 13.
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3. (The calculations in this Problem are similar to those on pages 79-82 and
97-100 and might be postponed until then, or they may be regarded as a re-
hearsal for the latter) Let X = Xj,..., Xm and X = X'1,..., X' be two
adopted orthonormal moving frames on M" Cc N. Let sU and s” be the
unique functions with

w}, _ ZSiji, Zslr 9/1
i

Say that X' = X -« for an orthogonal matrix of functions 4, so that we have
(pp. 11.280, 282)

0 =a"'-6 and v =a"'da + a'Ya.

The matrix a must satisfy a7 = 0= al, since X and X' are both adopted to M.
Conclude that

Y’ = Z(a—‘) G

and thus that
Zs (a'l)h = Z(a '), ,ha = Zs kja = Zs,ha ak.
i
Hence show that the definition
s(X'5, X0 =) s X
is compatible with the definiion
s(Xi. Xn) =Y sty Xu.
u

4. Apply the equation for w;’ﬂ on page 20 to (Xg, X1). Noting that

Ay (Xa, Xp) = X () = X (X0) = 7 (X XD
X, X)) = Vg Xi = Vg X = 3 0] (Xi) Xi = wp (XD X,

deduce the last equation in the proof of Theorem 11.
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5. Let N and N be two n-dimensional Riemannian manifolds of constant cur-
vature Ko. Let Xj,..., X, be an orthonormal basis of Np, and Xi1,..., X, be
an orthonormal basis of Nj. Let ¢: [0,1] = N be a curve with ¢(0) = p.
By Corollary I1.7-13, there is an isometry f from a neighborhood Uy of p to
a neighborhood of p, with f.(X;) = X;. A continuation of f along ¢ is a
family { f;} of isometries f;: U — N where Uj is a neighborhood of ¢(¢), with
fo = f, satistying the following condition: for each ¢ there is § > 0 so that
t =t <8= fr=fronUnUp.

(a) If {f;} and {g,} are two continuations of f, then each f; = g, in some
neighborhood of c(¢).

(b) If N is connected, then there is at most one 1sometry ¢: N — N with
¢*Xi = Xi~

(c) Let N be complete, and let K = {g € N : d(p,q) < length of ¢}. Then K
is compact (see pg. 1.343). Conclude that there is § > 0 such that for any
orthonormal Yi,...,Yy € Ny (0 < ¢ < 1) and orthonormal Y1,....Y, €
N, (q € K), there is an isometry taking ¥; to ¥; whose domain contains all ¢(r)
for |t — t'| < 4. Then show that a continuation always exists.

(d) If N is simply-connected, show that for two paths ¢,y : [0,1] — M with
c(0) = y(0) = p and ¢(1) = y(1) = ¢, the continuations { f;}, {g;} of f along ¢
and y must satisfy f;(¢) = g1(¢). Conclude that for N complete and N simply-
connected, there is a (unique) isometry ¢: N — N with ¢ X; = X;.

(¢) Any two simply-connected complete manifolds of constant curvature Ko
are isometric, and there is an isometry taking any orthonormal basis of such a
manifold to any other orthonormal basis.



CHAPTER 2

ELEMENTS OF THE
THEORY OF SURFACES IN R’

his chapter will parallel as closely as possible the first chapter of Volume II.

Our interest will now be directed away from the mtrinsic geometry of
surfaces, and toward those properties which describe the particular ways they
are immersed in R?.

We recall that in our study of curves, we defined certain quantities, the curva-
ture x and the torsion 7, which describe the local appearance of a curve in R3.
The curvature was first defined in an extremely geometric way, by taking limits
of circles passing through three points of the curve. But it could be defined
quite simply as « = |t’|, and exactly this approach was used to define r. We
then showed that these quantities actually describe the curve completely, up to
Euclidean motions. We also investigated certain global properties connected
with positive curvature. Finally, we showed how our investigations could be re-
formulated in terms of Lie groups, with Theorem I.10-18 playing a leading role,
and then went on to investigate properties of curves invariant under a different
group of motions of Euclidean space.

Our investigation of surfaces will proceed in just this order; however it will
differ from the study of curves in oue important respect. For curves we found
that the definition and study of « and 7 [or of the affine curvature x| was greatly
simplified by considering curves parameterized only by arclength [or affine arc-
length]. But for surfaces there is 1o natural choice of a parameterization; to a
certain extent this is responsible for the considerably greater coniplications one
encounters i surface theorv.

In Chapter I1.3B we considered a submanifold M C R3 withi: M — R?
the inclusion map. and we defined the first fundamental form [ by I =7*( , ).
where ( , ) is the usual Riemannian metric on R3. In terms of a coordinate
system x = (x. 1) on M. we wrote the tensor I on M as

I=EdyQ@dy+ Fdx®dv+ Fdy®dx +Gdy ®dy

for certain functions E. F.G on M: and we noted that if the inverse of x is

31
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/U — R3 (for U C R? open), then

9 af
E(f(s,t)) = <8—§(S’t)’ 8—J;(s,t)> = {fi(s,1), fi(s,1))

F(f(s’t)) = (fi(s’t)’ fZ(S’t))
G(f(s,0)) = {fa(s,1), fals,0)).

This means that E = (fi, fi)o f 7', etc., which sometimes makes the functions
E, F,G rather awkward to work with; consequently, we will often find it con-
venient to change our view slightly, and define everything explicitly in terms of
a given immersion.

If /: M — R? is an immersion, we define the first fundamental form I of f
to be the tensor f*{ , ) on M. In particular, when f: U — R3 (for U C R?
open) we have a form Iy on U, with

Le(s, ) (v, w) = { fuv, faw) for v, w e R,
We can then define functions E, F, G directly on U by

of of
(5o 3
(/1, f2)
= {/2, f2).

>=(f1,f1)

Q™
Il

These functions are nothing but the components of Iy = f*( , ) with respect to
the standard coordinate system (s,¢) on R? [and they have essentially already
been introduced on pg IL.128]. Since f*( , ) is positive definite, we have
EG — F? > 0 (pg 1.308); moreover (see Problem 1.9-5), we have

|fi x fal = VEG — F*.

It will often be much more convenient to use the subscript notation, which was
classically used for the higher dimensional cases,

gij = {/i» f;), so that en=E gn=gu=F gn=0_G.

We also introduce the functions g*/ which satisfy

> gugt =4,
k
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The functions E, F,G are analogous to the single function ¢ + |c’(z)], de-
fined for a curve ¢. We usually reparameterized our curves so that this function
was equal to 1, but for surfaces, where no convenient reparameterization is avail-
able, the functions E, F, G always play a vital role, analogous to the arclength
function of a curve.

We next seek an analogue of the functions k and 7 of a curve ¢. The definition
of « and 7 depended very much on the possibility of parameterizing ¢ by arc-
length, so that t(s) = ¢’(s) has length I, and consequently t'(s) = «(s)n(s)
for some unit vector n(s) perpendicular to the curve. In the case of a surface
M C R3, we do not have a special parameterization to work with, but we
already have an analogue of n, namely a unit normal field v, which can at least
be defined in a neighborhood of each point. We recall that a choice of v is
equivalent to a choice of an orientation for M, for we can let (X7, X2) € M, be
positively oriented if and only if (Xj, X2, v(p)) 1s positively oriented in R3.

When we are not dealing with a submanifold, but with an immersion f: M —
R?, the normal field should be considered as a “vector field along f”, since we
may have points p,q € Mwith f(p) = f(g), but with different normals at this

point. We will denote this vector field along f by
g = N@)r) € Ryq)-

Thus N is a function N: M — S2 C R* We will always adhere to the con-
vention of using v when we are specifically considering imbedded submanifolds
M C R?, and using N when we are considering immersions (and imbeddings)
f: M — R? when necessary, we will write Ny to indicate the dependence of N
on f. If W C Mis an open set on which f is an imbedding, then a unit normal
field v on M = f(W) C R? is determined by the condition that N = vo f
on W (naturally we have to regard v as a map v: M — S$2 ¢ R? in order

to write this). In terms of v we have already defined the second fundamental
form IT on M by

II(p)(vp, wp) = (—dv(vp), wp)
= (—=vs(vp), wp) for vp,wp € Mp.
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We can define the second fundamental form Il of f to be the tensor on M
defined by
Hf(‘[)(vqs wy) = (_dN(Uq)s f*(wq))
= (—N.(vg). felwy)) for v wg € My.
Equivalently, we have Il = f*IL.

In particular, let us consider an immersion f: U — R?, for U C R? open.
We can specifically choose N to be

_ hxfr  hixf (the negative square root gives
T Ax A JEG — F? the other possible choice for N).

Then

Ilf(s,t)(v,w) = (—dN(v Je(w))
— N, (V), fe(w)) v, W € Rz(s,,).

We will define functions /,m, n directly on U by

dN 0
[=<—¥~a—£> —Ni. fiy = (N, fin)
m= —N1 f2) = (N, fi2)

n = (=Na, f2) = (N, fn).

These functions /,m,n are simply the components of 1l with respect to the
standard coordinate system (s,7) on R? (compare with the proof of Theorem 1
on pg. 1L.123). Once again, it will often be more convenient to use subscript
notation:

lij = (=Ni. f;) = (N. fij).

Before we go any further, we should clear up one problem. Let us suppose
that f: U — R3 is actually an imbedding, and let M = f(U) C R?. In
geometric considerations, it is usually the lincar transtormation —dv: M, —
M, which interests us, rather than the second fundamental form I itself. Now
for p = f(s,1). the map —dv: M, — M, is related to the matrix (/;;(s, 1)) in
the following wav:

lij(s.t) = (=dv(fi(s.)p), fi(s.1)p).

Unfortunately, this does not mean that (/;;(s.1)) is the matrix of —dv with
respect to the basis f1(s.1)p, f2(s.1)p. because these vectors are not necessarily
orthonormal. To avoid going out of our minds now, and especially in the next
chapter, we make note of the following:
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0. FACT. Let vy,..., vy, be abasis for the vector space V, with the inner prod-
uct { , ). Suppose that A4 1s the matrix of a linear transformation 7:V — V
with respect to vy, ..., v,, while B and C are the matrices B = ({(T'v;, v;)) and
C = ({vi,vj)). Then

A= (BChHY,

where ' denotes the transpose.

PROOF. We have Tv; =Y Aj;vj, and consequently
J

Blk = TU,,U]( ZA” vj, Uk (At ' C)iks

so B= At . C. %

We apply this observation with

_ { matrix of —dv: Mp - M,
~ \ with respect to (f1)p, (f2)p

and
B = (l,'j), C= (gij)s

where f;, l;;, gi; are all evaluated at (s,¢), and p = f(s,t). Since B and C are
symmetric, we have (BC~1)t = C~!B; so we find that

0 (matrix of —dv: M, — Mp)

with respect to (f1)p, (f2)p = (gij)~ ij)

_ 1 ‘ G -F I m
" EG — F? -F E m on
[fi. gij, lij evaluated at (s,0); p = f(s,0)].

The functions /,n1,n certainly scem to be good candidates for the desired
analogues of the functions « and 7. As a first test of their appropriateness, we
will investigate how well these functions describe f up to second order m a
neighborhood of a point p.

What we are interested in is the shape of M = image f. not the particu-
lar parameterization f itself; so we will essentially fix the parameterization by
describing our surface M in terms of the distance of a point from the tangent
plane at p. For convenience we will assume that p = 0 € R? and that the
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tangent plane at p is the (x, y)-plane. Then our surface M is the graph of a

function #: R? > R with /,(0,0) = h3(0,0) = 0. Applying Taylor’s formula
for functions of two variables, we have

h(s,t) = L (A1 (0,0) - 5% +2112(0,0) - st + h22(0,0) - £?) + R(s,1),

where R(s,1)/|(s,1)|*> = R(s,1)/(s2 +t?) — 0 as (s,1) > 0. We therefore say
that the quadratic surface

P ={(s,6, 1 (111(0,0) - s + 27112(0,0) - st + h(0,0) - £%))}

“approximates M up to order 2 at 0"

Now we want to make an elementary observation which is crucial for avoiding
confusion. Suppose that X = (X}, X2) is any basis for R2, say with X; =
(an1,az1) and Xo = (ay2,a22). Our surface M can also be described as the
graph of a function in terms of the “Xj, X>,(0,0,1) coordinate system”. In

A\

other words, we can consider the function hX with 71X (s, 1) = the height above
the (x, y)-plane of the point of M lying above sX; 4 tX,. This means that

WX (s,t) = h(sXy +1X2) = h(ans + ant,ans + axnt).
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If we momentarily denote (s, ¢) by (s', s2), then we can write more conveniently

2 2
WX (s!,s?) = h(z ayis’, Zazisi),
i=1 i=1

and for the partial derivatives of 4 we easily compute that

2 2 2
hX (st %) = Zajahj (Za”si, Zazisi)
j=1 i=1 i=1
2 2 2
W ap(s',s7) = ) ajaarphiji (Zalisi, Za2i5i),
i=1

Jok=1 i=1
so that in particular
h*,(0,0) =0

2
E3
() hxaﬁ(o,O) = Z ajadrpghix(0,0).
Jk=1

Now the quadratic surface @ C R? = R? x R defined by
Q = {(sXi + Xz, L(h¥11(0,0) - 52 + 28%12(0,0) - st + 1%5,(0,0) - 7))}

can equally well be said to approximate M up to order 2 at 0. But we claim
that the surfaces P and Q are exactly the same. 'The best way to express this claim
is as follows. For each basis X = (X3, X3), let us define a function oX: RZ R
by

X (sX; +1X2) = L(h%11(0,0) - s + 2h%12(0,0) - st + 1%5,(0,0) - 1),

Then the functions ®X are all the same function ®: R? — R, and we can
therefore describe both P and Q simply as the graph of ®. To check that all

®X are the same, let us use ® for the function we obtain when X is the standard
basis (1,0), (0,1). Then

2 2

O(s' Xy + 52Xy) = @ (Za is', ) ays )

1

~.

2= 2
=13 hp0,0)- (Za,-,-sf)(zuk,-s")
i=1 i=1

j.k=1
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2 2
:% Z (Z hjk(o, O)ajaakg)s“sﬂ
o, B=1 i k=I

2
=7 Z "X 45(0,0)s5% 5P by (%)
o, f=1

= ®X(s' X + 57 Xa),
which 1s what we wanted to prove. It is also easy to see that if we describe M in
terms of the “X1, X, (0,0, —1) coordinate system”, then ® becomes —®, while
the resulting second order approximating surface is unchanged. Thus, for every

point p of a surface M in R3, there is a well-defined quadratic surface P which
approximates M up to order 2 at p.

oL
p
Let us for simplicity stick to the case where p = 0 € R?, the tangent plane

at p is the (x, y)-plane, and M is the graph of h: R? — R (in the standard
coordinate system). The surface M is the image of the immersion

f(s.t) = (5.t h(s,1))

for which we have

N = N(0,0) =(0,0,1)
{ =1(0,0) =((0,0,1),(0,0,/%1(0,0)))
= /11,(0,0)
m = m(0,0) = /112(0,0)
1n =n(0.0) = />(0,0).
Thus our approximating quadratic surface P at 0 is described explicitly as the
graph of

m n

a(s.r) = 3(Is* + 2mst + ni?) = %<(s.t), (s.1) - ( ! ’”)>.
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To sec just what this graph looks like, we choose two orthonormal eigenvectors

X1. Xz € R? for the symmetric matrix [ 'mY ith corresponding eigenvalues
| y Ly, ponding eig

k1, k2. Then
[ m
a(sX1 +1X7) = sX1+1Xo, X +HtX; -

[ Sl

m n

(s X1 +tX7, ski1 X1 +tk2X2)

[ STE N ST

(k1S2 + k2f2).

In other words, after a rotation of our axes so that they pomt along X1, X2, the
graph of @ becomes the graph of &: R? — R defined by

Q(s,t) = Y(kis? + kat?).
The shape of this graph depends on the sign of k{k; = det (’l m ) =1In—m?,
and leads us to classify the points p nto four types.
\. Elliptic point: In — m? > 0. Then ky,k; have the same sign. If ky,k; > 0,

then the graph of

52 12

Wk ) (k)

is an elliptic paraboloid; planes parallel to the (x, y)-plane intersect the graph of &
in similar ellipses, while planes parallel to the other coordinate planes intersect

the graph i parabolas.

<>

In our new coordinate system, the original surface is the graph of /1. where

a(s,t) =

hi(s, 1) = a(s.1) + R(s,1).

with R(s, 1)/(s>+1?) = 0. There is clearly a constant 4 > 0 such that @(s,t) >
A(s? + 12). SO

_ R(s.t _ q(s, 1) — h(s,t TN
0= lim - (5.7) = lim M > A— hm —(—)2,
5,0—0 S2412 (s.0)—0 52412 (5.0)—>0 s2 + 1
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and hence

h(s,t -
% >A/2>0 for sufficiently small (s, t).

Therefore E(S,t) > 0 for small (s,¢). Thus points of our surface which are
near p lie on the same side of the tangent plane at p as v(p). If ki, ks <0,
then the graph of @ is an elliptic paraboloid pointing in the other direction,
and points of our surface which are near p lie on the other side of the tangent
plane at p.

2. Hyperbolic point: {n—m? < 0. Then ky, k2 have opposite signs, say kj > 0 > k.
The graph of

52 t

V2rk)  (V=2/k)

1s a hyperbolic paraboloid; planes parallel to the (x, y)-plane intersect the graph
of & in similar hyperbolas [except that the (x, y)-plane itself intersects the graph
in two straight lines through (0, 0)], while planes parallel to the other coordinate
planes intersect the graph in parabolas. It is easy to see that there are points

2
a(s,t) =

/‘ ¥ y

L]

: . v .
DN

of the original surface arbitrarily close to p lying on both sides of the tangent
plane at p.

3. Parabolic point: In — m* = 0, but not all of I,m,n are 0. Then exactly one
eigenvalue is 0; say k1 = 0 but k> # 0. The graph of

a(s,t) = Skat?
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is a parabolic cylinder. If k» > 0, then our original surface must contain points
close to p on the same side of the tangent plane as v(p). But there can also be

X

points arbitrarily close to p on the other side of the tangent plane. For example,
our surface might be the graph of

his,t) = s34+ 1%

4. Planar point: | = m = n = 0. The graph of & is the (x, y)-plane.

In the planar case, nothing at all can be said about which side of the tangent
plane our surface lies on. For example, our surface might be the graph of any
one of the following functions:

his,t) = s* graph lies above the (x, y)-plane
h(s,t) = —s* graph lies below the (x, y)-plane
his, 1) = s? graph lies above and below the (x, y)-plane.

A more interesting example of a planar point is provided by the “monkey
saddle”, the graph of

his,t) = §3 — 3st?

= real part Of (S + it)37

with a planar point at 0 € R3. I was always very confused by the name of this
surface, because I thought it was supposed to be a saddle that you put on a
monkey. Actually it’s a saddle that a monkey uses (to ride a bicycle, say)—there
are two depressions for its legs, and an extra one for its tail. The monkey saddle
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imtersects the (x, y)-plane in the set
{(x, ) X3 - 3xy2 = 0}

whicli consists of 3 straight lines all making equal angles with each other.

x=0
P
A
<
\vl
6 _x
£2X =
T -
2 6 V3
~
+
v

Notice that our classification of pouts on a surface as elliptic, hyperbolic,
parabolic, or planar, does not at all depend on the special parameterization
which we introduced; for equation (I) on page 35 shows that

det(/;;) In — m?
det(—dv: M, M,) = = ,
e( Y P p) det(gij) EG - F?
which means thiat the sign of /n—m? is always the same as the sign of det(—dv).
When we do introduce our special parameterization, we have £ = G = 1 and
F =0 at (0,0), so equation (I) then gives

(lij) = matnix of —dv: M, —> M.

Cousequently, the numbers ki, k2 which we have found can also be described
ivariantly as the eigenvalues of —dv; the orthonormal vectors Xy, X3 (in RZ,
whicli we have identified withh M,) are just the eigenvectors of —dv.

The quadratic surface P whicl approximates M up to order 2 at a point
p € M is called the osculating paraboloid at p: when p = 0 € R, the tangent
plane at p is the (x,y)-plane, and X;, X> point along the x- and y-axes, it is
the graph of

~ 2 2
a(s.t)y =a(s.t) = %(kls“ + kot?).
For space curves we obtained an analogous osculating curve (pg. 11.31), and
we used this osculating curve to examine the original curve niore closely by

projecting it on the coordinate planes. That procedure wouldn’t make nwch
sense liere, but there is something else we can do. Suppose we first intersect
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the osculating paraboloid with the two planes parallel to the (x, y)-plane and
at distance d from it, and then project the intersection onto the (x, y)-plane.

We obtain the set

Ja ={(x, ) kix? + kyy* = £2d},

which is either an ellipse, a pair of hyperbolas, a pair of parallel lines, or nothing.

Clearly, the sets

o {() o)

are all the same, namely

Ja 2 2
=J ={(x,y) kix"+kyy* = £1}.
vad
(a) k1, k2 have same sign (b) k1, k2 have opposite signs

((‘)k|=0,k2#0 (d)klzkzz

N

//
,

,
.

...

J )

Suppose now that we repeat this procedure, except that we intersect the two
planes with our original surface instead of with its osculating paraboloid. We
would expect the limiting set to be the same, since the surface agrees with its
osculating paraboloid up to order 2. Actually, one has to be a little careful in

formulating this result, and the corresponding proof is somewhat long, but not
very interesting.
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1. PROPOSITION. Let p € M be a point of an imbedded surface M C
R3, and let X;, X> be orthonormal eigenvectors of —dv: M, — M,, with
corresponding eigenvalues ki, ka. Let I C M) be the set

I ={X € M, k((X,X\)* +ka(X, X2)? = £1},

so that I is congruent to

(@) the ellipse k1x2 + krp? = +£1 p an elliptic point

(b) the hyperbolas k1x2 + kp? = +1 p a hyperbolic point

(¢) the parallel lines k> y? = +1 p a parabolic point with k» # 0
d) 9 p a planar point.

For d > 0, let Iz be the projection on M, of the intersection of M with the
two planes parallel to M, and at distance d from it. Then

where this limit has the following meaning: For every & > 0, and every compact
set C C M), there is some § > 0 such that if 0 <d <8, then

(i) every point of I N C is within & of some point of I;/v2d
(i) every point of (Iz/+2d ) N C is within & of some point of I.

Remark: In case (d), this just means that 13/32d eventually lies outside of any
compact set. In case (a), we clearly do not have to use the compact set C' in
condition (i), since I itself is compact. And in condition (i) the compact set C
is needed only to exclude points of Iz coming from extraneous points of M
which are not near p.

PROOF. We assume that p = 0 € R?, and that M, is the (x, y)-plane, with
the eigenvectors X, X; of —dv(p) pointing along the x- and y-axes. Then M
is locally the graph of a function i: U — R (for U C R? open), and we can
assume that

Ig={(s,t)y e U 1 h(s,t) = +d}

[there is no need to consider the points (s,7) outside U, since for sufficiently

small d. the corresponding points (s/v2d .t/~2d) lie outside of any given
compact set C C Mp]. We thus have

k]Sz kztz
> T B

Id:{(s,t)GU : +R(s,t)=:!:d},
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where
R(s,t)
(0 m -0 as (s,1) = 0.
Hence
/ («/ﬁo, «/ﬁr) € U and
d
—==14(o7): R(v2do,v/2d
v2d k102+k2‘[2+ ( il T)

d

Setting s = v2do and t = v2d 7 in (1), we see that
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(2) R(;/(_:ZO_;{?T) -0 as (\/EEO, «/ﬁr) — 0.

Now suppose we are given ¢ > 0, and a compact set C
might as well assume is of the form

C = {(o,r) cVol412< A}.
Choose g9 > 0 so that
(3) le| < g0 = |1 —V1xa| <e/A.
Let (0,7) € C N I, so that
4) kio? + k> =41 and \m < A.

Consider the function

R(V2do, «/ﬁr)

() dr y 0<d<l.
This is continuous in d, and approaches 0 as d — 0%, by (2).
such that

R(V2do,V2d
(6) 0<d<fé = (V2do (T) < gp.

d

C My, which we

So there 1s § > 0
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Let
R(V2do,~/2d7)
x =
d 3

and consider the point

V1—a) if + 1 holds in equation (4)

ovl—ua,1
(ovV1Fa,tVlFa)= (

(ov1T+a,74/1+a) if — 1 holds in equation (4).
We have

ki(ov/1 —a)2+k2(r 1 —a)2 =(l—a)kio? +kt’]=1—a
ki(ov/1 +a)2 +ka(zv/1 +a)2 = +a)ko?+kt]=-1—a,

so (o1 F o, /1 Fa)isin I;/~2d. Its distance from (o, 7) is

I-VIFa|Vo?+12 < %\/02 + 12 by (3), since |a| < g9 by (6)
<& by (4).

We have thus found a § > 0 so that the given point (o, 7) € C N I has distance
less than ¢ from a point of Id/\/ﬁ, for all d < 8. To conclude that one § can
be found which works for all (o, 7) € C NI we need the fact that the function (5)
approaches 0 uniformly in (o, 7); this follows from compactness of C.

We will now prove (il). Given &€ > 0 and A4 > 0, pick & > 0 so that

1 €
7 ol < g — \1 - —.
u ol < &0 =<
Then pick do > 0 so that
R(s.t) &0

i 2
STHIT <) = —— < —.
s2 412 242

Setting s = v2do and = v2dt. we sce that

o R( 2(10.@‘[)

2d d

&0
< F(o2 + 12).
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Let 8§ = 8p/2A4%. Then

0<d<f§ = 5—0>A2.
2d

Soif 0 <d < 3§, then

)
9 cither o> +12> A% o o’ +1P< A< 2—0{.
[¢

In the first case, the point (0,7) € Iz/v2d is at distance > A from the origin.
In the second case, we have

R(v2 v
(J—d‘;m’)«j%(ozuﬂ by (8)

< &g by (9),

so the point (0, 1) € I;/V2d satisfies the equation

R(v2do, «/ﬁr)
d

==+l —«, where 0 < || < gy.

(10) kio? +kyt? = £1 -

Now the point

(7 77

1s1n I, and its distance from (o, ) 1s

1 e
1 — Vol +12 < =2 +412 by (7), since Ja| < g9 by (10

<e by (9).

This completes the proof. ¢

The limiting set I C M), of Proposition 1 is called the Dupin indicatrix at p.
In the case of a planar point, we can obtain a more meaningful indicatrix by

. . . 3 . ~ K . . .
considering Jlmo 15/ Vd—the adjustment factor 1/ Vd is just what we need in
—
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order that the projection on M, of the intersections of parallel planes with the
osculating cubic will be the same. The figure below shows the resulting indicatrix
for the monkey saddle; the continuous lines come from intersections with planes

on one side of the tangent plane, and the dashed lines from intersections with
planes on the other side. Similarly, if all derivatives of 4: U — R up to order

k — 1 are 0 at (0,0), then we can look at the generalized indicatrix l}imo 1a/ Vd.
—

Certain geometric terminology concerning conic sections has been taken over,
via the Dupin indicatrix, to surfaces. Given a conic section in the plane, the
directions which we have chosen as the x- and y- axes are called its principal
axes. Consequently, the unit vectors Xi, X2 € M), (that is, the unit eigenvectors
for —dv: M, — M,,) are called the principal vectors. They are really defined

only up to sign, so it is often more convenient to speak of the principal directions;
moreover, if k; = k,, then all unit vectors are to be considered to be principal.
The eigenvalues ky and k» are called the principal curvatures at p. We have
already met these vectors and curvatures in Volume II, and we recall that if
X = (cos8) X, + (sinf) X, is any other unit vector, then

AL (=dv(X), X) = (ki(cos0)X| + k2(sin6) X7, (cos0)X; + (sin ) X7)
— ky cos 6 + ko sin 6,
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which shows that ki, k> are the minimum and maximum of (—dv(X), X) for
unit vectors X € M. Recall also that we defined

K(p) = Gaussian curvature at p = k; - k>

H(p) = mean curvature at p = %(kl + k7).

A surface M 1s called flatat p if K(p) =0. So p 1s a flat point if and only if p
is either parabolic or planar.

For hyperbolas, there are two other important lines, the asymptotes (the dashed
lines in the previous figure). The unit vectors which point along these lines in
the Dupin indicatrix are called the asymptotic directions. If the hyperbola has
the equation

kix? + kzy2 = =1 (k1, k> of different signs),

then the equation of the asymptotic lines y = mx is found by noting that for
large x the point (x,mx) 1s almost on the hyperbola, so

kix? + kom?x? isclose to +£1 = ky +kom? s close to 0,

and hence m = +./—ki/k,. On the other hand, if we consider a unit vector
X = (cos0) X1 + (sinf) X3, then formula (IT) gives

(=dv(X), X) = ki cos? 0 + k> sin 6,

and this clearly equals 0 precisely when tan6 = 4,/—k;/k,. We therefore see

that the vector X € M, points along an asymptotic direction if and only if
(dv(X), X) =0, and hence II(X, X) = 0.

principal vectors

anf = +,/ 72 /

\é\\‘» [ 0
RN

s

asymptotic vectors

Asymptotic directions do not exist at elliptic points, while there are two dis-
tnct asymptotic directions at hyperbolic points, and these directions are bisected
by the principal directions. At a parabolic point there is only one asymptotic
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direction—the principal direction with principal curvature 0. At planar points
all directions are both principal and asymptotic. It is also clear that the asymp-
totic directions are perpendicular precisely when ky = —kz, or H = 0.

Finally, there is one more important term, which describes a point where the
Dupin indicatrix is actually a circle, so that the principal curvatures are equal,
and all directions are principal directions. A point where all directions are prin-
cipal is called an umbilic or navel point. This rather gross anatomical metaphor

o umbilic point

is meant to suggest that the surface is very round at the point, like a sphere, on
which all points are umbilics. Notice, however, that our definition also makes
planar points umbilies, which turns out to be a convenient arrangement. At
an umbilic, the map —dv is just multiplication by some number k; equation (I)
therefore shows that

lij = kgij at an umbilic.

At this stage it seems reasonable to begin asking to what extent the func-
tions /,m,n describe f globally. The simplest question we can ask coneerns
surfaces f all of whose points are planar. Just as a curve with everywhere 0
curvature is a straight line, so we would expect a surface with/ = m =n = 0 ev-
erywhiere to be a plane. This is easy to prove. For, /;; = 0 means (—Ni, fi) =0;
since N; is a linear combination of f1, f5, this means that —N; = 0, so N is
constant. Therefore (£, N); = (fi, N)+(f, Ni) = 0+0, and henee (f, N) = b,
where N is a constant vector and b is a constant number. This is just the
equation of a plane.

It would next seem reasouable to prove an analoguc of the fact that a circle
is the only plane curve with constant «. Here the situation is a little different,
llowever: we cannot expect to characterize a sphere totally in terms of /,m.n.
because we have not picked out a preferred parameterization; the functions
E. F.G must also play a role. In fact, the simplest criterion to consider is that
all points of /" be umbilics. This means that

I|=kE. m=kF. n=kaG,
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for a certain function k. Of course, in the case of a sphere, k is constant, but
we do not even have to assume that. Although the following analysis is quite
easy, it is worth recording as a theorem, which also includes the result about
surfaces with all points planar.

2. THEOREM. If M cC R3 is a connected surface such that every point is an
umbilic, then M is part of a plane or a sphere.

PROOF. Choose animmersion f: U — M. By assumption, we have (—N;, f;)
= (kf;, fj). Since N; is a linear combination of fy, f2, we thus have

) Ni = -k f;.

Consequently,
Nij = —kjfi = kfij.

Since N;; = Nj;, we obtain
—kj fi — kfij = —ki fj = kfij,

and hence k; f; = k; f;. Setting i =1, j = 2, and using linear independence of
1, f2, we obtain k; = 0, so k is constant. Thus equation (1) gives

2) N =—kf 4+uvy forsome vy € R>.

If k =0, then as we already showed above, f lies in a plane. If k # 0, we have

—N
k

f Vo N ‘ - vor 1
k ‘ k1 kY

so f lies in a sphere of radius 1/}k|. Simple supplementary considerations then

allow one to deduce the stated result. o

We now want to carry the analogy with curves still further, and see whether
every immersion f: U — R? is described completely by the corresponding g;;
and /;;. Of course, we only expect g;; and /;; to determine f up to proper
Euclidean motions (translations followed by rotations [elements of SO(3)]),
since g;; and /;; are already “invariant under proper Euclidean motions”—
i 4 is a proper Euclidean motion, then the g;; and l;j for Ac [ are the same
as those for f. In the theory of curves we showed that ¥ and 7 formed a
complete set of invariants for a curve up to translations and rotations, by show-
ing that they were a complete set of invariants up to rotation for the function
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s > (t(s),n(s), b(s)); this was accomplished by using the Serret-Frenet formu-
las, which are differential equations for (t,n,b), involving only « and 7. In the
case of surfaces, we have the three vectors (f}, f2, N), and so we want first to
express the derivatives of each of these vectors as linear combinations of these
same three vectors.

We begin by considering the fix, which we want to write as

2
M) Sk =Y Al fn+ BN

h=1

First we will worry about finding the Al’.’k, which amounts to finding the { fix, f;)-
To do this, we should obviously begin with the definition (f;, fj) = gij and
differentiate, to get

: 0gij
(fir> f3) + i fik) = &ijk [here gij.1 = Digij = —, etc.].

as

Now comes the familiar old switcheroo: We also have

(fii> fi) + iy fui) = &jk.i
(fej> Ji) + {Sr» fij) = &k js

adding the first two of these three equations and subtracting the third, we get

. 1
ik fi) = 5 @ik + Eiki = gik,j)
= [k, jl,
where [ik, j] is the Christoffel symbol for the metric Iy = f*( , ) on U with

respect to the standard coordinate system (s,f) on R2. Plugging back into (1)
we have

2
ik, j1= S [i) = D Alehis
h=1

and, of course, we can solve explicitly for A;’k, using the g'/:

2
P ik i1 = TP
Ay = Zg’”[lk,]] =T;.
j=1
There is no problem finding the B, since we have already introduced a name
for them:

By = (fik, NY = —(Ni, fi) = lix-
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We have thus found that

2
() fik = Z F;’k So+ 1Lk N The Gauss Formulas.
h=1

The reader can easily check that these equations are indeed precisely the Gauss
Formulas on page 4. Of course, in our present derivation, it 1s unnecessary to
use the V operator on the image of f, or even to have it defined; the only V
operator one needs to know about is the one for R?, and the I'’s just appear as
weird combinations of the g;; and their derivatives. (It is hard to see why these
formulas should be named after Gauss, for he never explicitly solves for the fi.
The closest results he writes down are certain formulas [for m,m’,m"” n,n’, n",
on pg I1.91] equivalent to the equations ( fix, f;) = [ik, j].)
We next want to express N; in terms of f1, f2, N, as

2
Ni=> Clfu+0-N.
h=1

Once again, there is no problem here, since we have already introduced a name
for the relevant inner products. We have

2
lij = {(=Ni, f;) = =) _ Clew,
h=1

and consequently
2
Cip - _ ngjlij-
j=1

Introducing new symbols /%, we can therefore write

2,2 2
(k%) N; = — Z(Z ghjl,-j)fh =— leh Jh The Weingarten Equations.
h=1 “j=1 h=1
Of course, equations (**) amount to little more than the definition of /;; and / Ih
but in the classical literature it is always precisely these equations which are
called the Weingarten equations.
The Gauss and Weingarten equations constitute an exact analogue of the
Serret-Frenet formulas for a curve—the derivatives of f1, [, N have been
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expressed in terms of these same vectors, and only the g;; and /;; enter. We
thus seem to be in a good position to produce an immersion f with given g;;
and /;;: we should first solve the Gauss and Weingarten equations for fi, f2, N,
and then solve for f. However, these equations are partial differential equations
(just 15 in all, for the 9 component functions flj n’), and we know that these
equations have solutions only if certain compatibility couditions are satisfied.
These conditions are given explicitly on pg. 1.187, but there is no need to turn
back to them: the required conditions are obtained simply by setting mixed
partial derivatives equal, and substituting the original equation into the results
so obtained. We will now derive these conditions explicitly.
We begin by using (x) to compute

2

2
Sieg = D Th Ji+ Y Tl S+l i N+ [N
h=1 h=1

[here Ty | = 0T} /3s, etc.]
2 2 2
A NAPIAETRY
p=1 h=1 o=1
2
+ ik j N = lik (Z /f/;,), using (x) aud (#*).
p=1

Setting fixj = fijk, and using hinear independence of fi, f2, N, we have

2
h
(A) T = Th D (ThTh = THTR) = lad ) = Lijlg
h=1
2 2
(B) likj — ik + Y Thlny = Y Thilw = 0.
h=1 h=1

T thiis 1mess. soe things should be looking familiar. Indeed. comparing with
pg 11.188. we see that equation () says that

Rpkj,‘ = /ik/;) - /,]/If

which 1s equivalent to
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( I) thjl = ZghpR kji = Zghp(/ /lk / )

p=1 p=1
2
= Zghp(z g% lgjlik — nga/ak/ij)
p=1 o=l o=1
by the definition of /;) n (%)
= Injlix — lnilij.
A special case 1s

2 Gauss’ Equation

Riziz = hilp — ol =In—m (Gauss’ Theorema Egregium).

This really is equivalent to Gauss’ Theorema Egregium, for it says (cf. pg. I1.190)

that
af afyaf af\_,
<R(89 az)ﬁ’a_s>_/"

and hence that the intrinsically defined Gaussian curvature K is given by

af of\ of of
_ <R(83 8[)5’ g> _In—m?
)G

as ds/\ar ar a5 ot

the final expression being the Gaussian curvature as originally (extrinsically)
defined for a surface in R3. In Volume I we gave a simpler looking proof
of this result, but the present proof is philosophically more satisfying, since 1t
relies only on standard techniques for dealing with a system of partial differential
equations. Notice that our proof of Theorem 1-6 was basically the same, since it
used the fact that R(X.Y)Z measures the difference of VyVyZ and VyVx Z.

It 15 easy to see that all other cases of () are equivalent to this particular
one, or are trivial, because of the identities

Rijkl = _Rjikl and Rklij = Rijkla

which always hold (pp. IL. 1941}, and the fact that the right side of (\’) has the
same symmetry properties.
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Now let us take a look at (B). If j = k it says nothing Moreover, the equation
for j =2, k = 1 is equivalent to the one for j =1, kK = 2. So we take the latter
pair for j and k, and let i = 1 or 2, obtaining

2 2
oy =+ Z F{'zlhl - Z Ffllhz =0
h=1 h=1 The Codazzi-Mainardi

Equations.

(B)

2 2
Iy —lia+ Z Félzlhl - Z Ffllhz =0
h=1 h=1

It is easy to see (Problem 1) that these equations can be derived from the ones
given in Corollary 1-12. [Note also that equations (A") and (B') are precisely
what the classical tensor analysis equations (11) and (12) on page 16 become in
this case.]

There is still one more set of equations which we must consider, obtained by
setting N;; = Nj;. However (Problem 2), it turns out that these reduce to the
Codazzi-Mainardi equations. We have thus found altogether three conditions
which must be satisfied, and our general theory (Theorem 1.6-1) tells us that
these are the only conditions we need. We are all ready for a theorem.

3. FUNDAMENTAL THEOREM OF SURFACE THEORY (BONNET;
1867). Let U C R? be a convex open set containing (0, 0).

() Let /. f: U — R? be two immersions, and define
gij = (/i J}) gij = {fi. /)
J1 x f2 N = fl X f_Z
Vg — g1 VEngan — 2’

lij = (=Ni, f;) = (N, fij) L = (=Ni, f;) = (N, fij).

N =

Suppose that g;; = gij and [;; = I;; on U. Then there is a proper Euclidean
motion 4 such that f = Ao f

(2) Let g;; and /;; (1, j = 1,2) be functions on U which satisfy

(i) gij = gjr and l;; = I;;. and (g;;) is positive definite on U, so that we can
define corresponding g/ and F{‘j
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(i) Gauss’ Equation:
Il — (h2)? = Riziz

h
—ng( 221 F§12+Z(F T — Fé’lrf,)z))

(ii) The Codazzi-Mainardi Equations:

2 2
haa—hiz+ Z Flhzlhl - Zrlhllhz =0
h=1 =

2 2
lpp1— a2+ Z Fé'zlhl - Z Fgllhz =0.
h=1 =

Then there is an immersion f: U — R? such that

gij = {fi, fj)

lij = (=Ni, f;) = (N, fii), for N = fi x f2

VEuga» — g122

PROOF. Let us adopt the more systematic notation

i=h, 2=/, vi=N
Wi=h, Va=rf, v3=N.

To prove (1), we first choose a rotation B € SO(3) such that
B(v¢(0,0)) = v¢(0,0) a=12.3

This is possible because g;;(0) = g;;(0) for i, j = 1,2, and because the two
triples of vectors (vi(0,0),v2(0,0),v3(0,0)) and (v{(0,0),v2(0,0),v3(0,0}) are
both positively oriented, with the third vector perpendicular to the first two.
Ifwe let f = Bo f. then it is easy to see that

gij = gij = &ij
v3;=Bov;

Lij = lij = liy.
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We claim that the maps
(V1.¥2,%3). (V1,¥2.93): U > R,

which we know are equal at (0, 0), are actually equal everywhere. To prove this,
we recall that the Gauss formulas and the Weingarten equations give

2
Vik(s.0) = D Ths,OVh(s, 1) + lig (5. 0OFa(s,0) i =1.2
h=1

(koK) 5

2
Va(s.1) = — Z(Z M (5,0l (s. z))v,,(s. 1)

h=1 Vj=1

for the Va, while for the Vi we obtain the corresponding equations with r:k’
lix and g% . But lix = lix, and since gij = gij we also have g = g" and
f‘ihk = f‘ihk. So the two maps (Vy.V2.V3) and (V. V,V3) satisfy the same equa-
tions (x#%) and have the same values at (0,0). Therefore they must be equal
on U (Theorem L.6-1). But this means that f and f = Bo f have the same par-
tial derivatives, and therefore differ by a constant vector. Consequently, there is
a translation 7: R? > R3with f =T o f =(T o B)o f.

To prove (2), we use Theorem L.6-1 to conelude that equation (xxx), written
in terms of the given g;; and /;;, has a solution vi,v2.v3: U — R? with any
desired mitial eonditions; we have already seen that the required conditions in
Theorem I.6-1 amount precisely to Gauss’ equation and the Codazzi-Mainardi
equations. Moreover, the functions v, can be defined on all of U because the
equations (xxx) are linear (compare pg. 1.165). Since (g;;) is positive definite at

(0.0), there is a solution for which the the following conditions are satisfied at
(s.1) = (0.0):

(a) (vi(s.0).v;(s.0)) = gij(s.1) i.j=1.2
(Iy) (vi(s.t).v3(s.0)) =0 i=1.2
(©) Vi(s. )] =1

{d) (vi(s. ). v2(s.1).v3(s.1)) 1s positively oriented.

We will show that conditions (a)—(d) actually hold at all pomts of U.
Our equation (%) for vi.v2.v3 gives the equations

A vy = (v 'ik Vi) + (Vi,ij)

“Zr:k Vi V) Z (Vn Vi) + V3 vi) + L {vs.v)
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for i, j = 1,2, as well as

(B) (vi.vadk = (Vik,V3) + (Vi. V3 k)
2 2

zlik_z(

ghjlkj) (Vi, ¥p)
1

and
(C) (v3,v3)k = 2(v3 &, v3) = 0.

[Equations (A)=(C) all hold for k = 1,2.]

But we also have
gijk = lik, j1+[jk,i] (by pg. 1.331)

2 2
h
=3 thon + L Chaw
h=1 h=1

This shows that the set of equations (A)—(C) are satisfied both by

the set of functions:  (v;,v;) (j = 1,2), (v3,v1), (v3,V2), (V3,V3)
and by
the set of functions: gij (=12, 0, 0, 1.

Moreover, we chose the v; so that these two collections of functions have the
same value at (0,0). It follows that they have the same values on all of U. In
other words, equations (a)—(c) hold on all of U. Moreover, (a) and (b) [and non-
singularity of (g;;)] imply that (vi,v,,v3) are always linearly independent. So
condition (d) at (0,0) implies condition (d) everywhere.

We now claim that there is a function f: U — R? satisfying fi = vi. In order
to prove this, we just have to show that v; ; = v; ;. But this follows from (x:x:x),
by symmetry of the Fi and l;x. We now have (fi, f;) = gij by (a). Moreover,
(b)=(d) then show that v3 = #n. Consequently.

(fijn) = (vij.va) =1

by (##x), together with (b) and (c). «»
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Theorem 3 is exactly the sort of result we would want if we were primarily
interested in immersions f: U — R3. But what we really want to study are sub-
manifolds of R3, without relying on a particular choice of a parameterization.
For example, let us consider two surfaces M, M C R* and a diffeomorphism
¢: M — M. We would like to have conditions which insure that ¢ is the re-
striction to M of some proper Euclidean motion. If we arbitrarily choose some
immersion f: U — M C R? and let f:U — R*be f = ¢o f, then Theo-
rem 2 tells us that such a proper Euclidean motion exists if the g;; and /;; for f
equal the g;; and ;; for f. Now the individual functions gi; and /;; for f do
not have an “invariant meaning”: given a submanifold M C R?, we cannot, for
example, find functions y;; on M so that every f: U — M has its g;;’s given
simply by gi; = yij o f. Fortunately, however, the tensors

gndsQds+grds®dit +gndt @ds+gnd Qdt
mds®ds+1ldsQdt +1ndt Qds +1ndt @dt

do have an invariant meaning: they are just f*I and f*II. So we can formulate
the first part of Theorem 3 for submanifolds:

4. COROLLARY. Let M, M C R?be two connected oriented surfaces imbed-
dedin R letvi M > S2cRPandv: M - S? C R? be the unit normal
vector fields determined by the orientations, and let I, II and L, II be the first
and second fundamental forms for M and M (the forms II and II being de-
fined with respect to v and ¥, respectively). Let ¢: M — M be an orientation
preserving diffeomorphism which preserves the first and second fundamental
forms,

p*1=1 (i.c., ¢ is an isometry)
¢*Il =11
Then there is a proper Euclidean motion A4 such that ¢ = A|M and A,v = v.

PROOF. Let f: U — M C R3 be an orientation preserving immersion, and
let f=¢of:U— M C R? the immersion /is also orientation preserving,
since ¢ is. The g;; for f are the coefficients, with respect to the standard
coordinate system (s,¢). of

IT=@o = f"¢T= /"1
Consequently, gi; = g;j. Similarly, since f is orientation preserving, the /;; are
the coefficients of /*I1 = f*II; since f is also orientation preserving, we find

that /;; = I;;. By Theorem 3, there is some proper Euclidean motion 4 such
that ¢ = A on f(U). If we choose immersions { fo : Uy — M} whose images



Elements of the Theory of Surfaces in R? 61

cover M, it is easy to see that the corresponding A, must all be the same proper
Euclidean motion 4. &

We also want to formulate the existence part of Theorem 3 for manifolds,
rather than immersions. So we consider an oriented surface M with a Rie-
mannian metric { , )} [corresponding to the g;;] and a symmetric tensor S
covariant of order 2 [corresponding to the /;;]. In the previous chapter we
have already seen how to give an invariant version of Gauss’ equation and the
Codazzi-Mainardi equations. This allows us to state

5. COROLLARY. Let (M,{ , %) be an oriented Riemannian 2-manifold,
with covariant derivative V and curvature tensor R, and let S be a symmetric
tensor on M, covariant of order 2. Suppose that S satisfies

() Gauss’ Equation:
(RX, Y)Y, X) = S(X, X)S(Y,Y) - [S(X, V)]
(2) The Codazzi-Mainardi Equations:
(VxSIY, Z) = (V¥ S)(X, Z).

Then for any p € M there 1s a neighborhood U of p and an immersion
f: U — R? such that

where { , ) is the usual Riemannian metric on R* and II is the second fun-
damental form on f(U) defined in terms of the unit normal field v which is
determined by the orientation that f(U) gets from the orientation on U C M.

PROOF. 1eft to the reader. «

Unlike Corollary 4, where a global result comes almost automatically, in
Corollary 5 we cannot generally choose U to be all of M. As an example,
we take the torus S' x S! with a flat metric { , ) [pg IL.179] and let S = 0.
The Gauss and Codazzi-Mainardi equations are trivially satisfied. But the only
connected submamnifolds of R* with I = 0 everywhere are subsets of a plane
(Theorem 2), so we certainly cannot find an immersion f: S' x S — R3 with
J*II = S = 0 everywhere. On the other hand (Problem 3), we can take U to
be all of M in Corollary 5 when M is simply-connected.
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Now that we have adequately documented the importance of the second
fundamental form in surface theory, we will take this opportunity to slip in
something new. The reader has perhaps already surmised with subconscious
dread that there is a third fundamental form, and even yet higher numbered
monsters, but these bogey men turn out to be very nicely hehaved creatures
which are in no way to be feared. For a submanifold M c R?, with unit
normal v: M — S C R?, we define the third fundamental form III of M by

HI(p)(vp. wp) = (—dv(vp), —dv(w,))
= (dv(vp).dv(w,)) Up. Wy € M),
Similarly, if f/: U — R? is an immersion (for U C R? open), we define I, hy
I (s, ) (v, w) = (dNg(v), dNg(w))
= (N (Np)u(w))  v.w € R p).

This is equivalent to defining Iy = f*III, where III is the third fundamental
form for image f. Remembering that dv: M, — M, is self-adjoint (Theo-
rem 1-8 or Theorem II. 3-1), we see that

L p)(vp. wp) = (dV)*(vp). wp).
This suggests defining
IV(p)(vp, wp) = ((dv) (vp).wp),

and so forth. There is no notational way to write down the general definition,
since no one has ever addressed the burning question of how we should indicate
the n'" Roman numeral (come to think of it, no one even knows how to write
down arbitrarily large Roman numerals). But that doesn’t matter very much,
especially as all these forms are expressible in terms of I and II anyway:

6. PROPOSITION. For a surface M C R? we have
I -2H - II+ K-1=0.
{(Similarly. for an immersion f: U — R3?, we have
Iy -2H -1l + K -1y =0.
where H(s.t) is the mean curvature of image f at f(s.1). etc.)

PROOF. Remember the Caylev-Hamilton Theorem! The map —dv: M, —
M, satisfies its characteristic polynomial x(A), which is given by

x(A) = A% — [trace(—dv)]A + det(—dv) = A? —2HX + K.
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Consequenitly,
(—dv)?* = 2H(—dv) + K -identity =0 on M,.

Applying this equation to vp, and taking the inner product with wp, we obtain
the desired result. &

Itis clear that we can also express I'V in terms of IIl and II, etc. Proposition 6
does not necessarily mean that III is not worth considering, for it is still a useful
tool for expressing certain quantities. Suppose, for example, that we have an
immersion f: U — R?, with normal map Ny (= vo f for the unit normal map v
on image f). Since the normal map Ny plays such a vital role mn describing
the geometry of f, it is not at all unreasonable to ask what the first and sccond
fundamental forms of Ny look like. Notice that in this iustance we certainly
want to explicitly consider the forms Iy, and Ily, for the map Ny: the image
of Ny is just part of S2, so its first and second fundamental forms aren’t very
interesting,

7. PROPOSITION. Let f: U — R? be an immersion with normal map
Ny = vo f. Then the third fundamental form of f is both the first funda-
mental form of Ny and the negative of the second fundamental form of Nj:

Iy =1In, = ~lln;.
PROOF. Our original definition,
I (s, 0)(v, w) = ((Np)a ), (Np)u(w)),

shows that Il = Iy,. Since the unit normal vector at any poit p € S? s
just p itself, it is also clear that thie normal map of Ny is just Ny itself, so we
have Ny, = Ny. Thus

Iy, (s.0) (v, w) = (=(Nn,)u (V). (Np)s(w))
= (—(Np)e(v). (Np)u(w)). <&

This result will come i handy at one point in Chiapter 9, but we have 1o more
to say about III at present. Following the route set forth in the first chapter of
Volume II, we will now briefly look at some global properties of surfaces which
are related to positive curvature. At the very outset we note one respect in wlich
the situation for surfaces in R? is different from that of curves in R*: Although
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we are able to define a signed curvature « for a curve ¢ in R?, the sign of «
depends on the “orientation” of ¢, and is reversed when we traverse ¢ in the
opposite direction; but for a surface M C R?, the Gaussian curvature K, which
may also be positive or negative, does not depend on the orientation of M. We
begin with a simple, but sometimes useful, observation.

8. PROPOSITION. If M is a compact surface immersed in R?, then there is
at least one point p € M where K(p) > 0.

PROOEF. The trick is to choose a point p € M whose distance from 0 is a
maximum. Then M is even more curved at p than the sphere of radius |p|—
in fact, each principal curvature i1s > 1/]p[, by Proposition 11.3-0, and the
corresponding result for curves in R2, Details are left as an exercise. %

This result gives us another way of seeing that the flat torus cannot be im-
mersed in R? (no matter what tensor S we choose on it).

We now want to consider surfaces M with K(p) > 0 for all p € M. We
naturally hope to relate this condition to convexity, so a brief discussion of that
concept is in order. We define an imbedded surface M C R? to be convex if it
lies on one side of each of its tangent planes. As in the case of curves, we would
first hike to relate this definition to the more common one.

a convex

surface

Any subset 4 of R? is called convex if the line segment pg from p to ¢ is
contained in A whenever p,g € A. Suppose A is convex and p is a point in the

boundary of 4. A plane P containing p is called a support plane of A4 if A4
lies completely in one of the closed half-spaces into which P divides R3.

/4

a non-comvex surface
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9. PROPOSITION. If 4 is convex, and p is in the boundary of 4, then there
is at least one support plane P containing p.

PROOF. 1f A has no interior points, it lies in a plane, and the Theorem follows
easily from the corresponding result, Proposition I1.1-3, for subsets of R2. If 4
has an interior point ¢, let Q be a plane containing ¢ and p, and let L be
a support line for A N Q through p. This line L divides Q nto two closed
half-planes; let Q' be the one such that Q' — L contains no points of Q N A4.

Now we will consider the various closed half-planes having L as their edge.
Choose one side of Q' and consider angles 6 such that the half-plane with L
as its edge which makes an angle of 6 with Q" on this side does not intersect 4
except along L (it may be that 6 = 0 is the only possibility). Let 6; be the least
upper bound of all such 6, and let Q; be the half-plane with L as edge which
makes an angle of 6;. Let Q1 be the corresponding half-plane on the other side

of Q.

To prove the theorem, it clearly suffices to prove that the angle between Q)
and Q- is > . We note that there are points of A on planes arbitrarily close to
Q1 and Q5. If the angle between @y and Q> were < 7, then we could consider a
suitable pair of such points, together with points of A in a whole neighborhood

of ¢, and find that A must contain some point of L in its interior, which 1s
mpossible.
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We now want to show that a compact connected 2-dimensional submani-
fold M of R? is convex if and only if the set A consisting of all points on M
or inside M is a convex subset of R*. Once again, we are assuming Corollary
L.11-15, and the following easy consequence:

Suppose M C R? is a compact connected surface, and [ is a ray from p
which intersects M at just one point ¢ # p. Suppose, moreover, that /
does not lie along the tangent planc of M at ¢. Then p is inside M.

p 1s inside M

p 1s not inside M

10. PROPOSITION. Let M C R? be a compact connected surface, and let A
be the set of all points on or inside M. Then M is convex (that is, M lies on
one side of each of its tangent planes) if and only if 4 is convex.

PROOF. Exactly like the proof of Proposition I1.1-4. ¢

We are finally ready to relate convexity and curvature. If you have found
yoursclf nodding drowsily at the rather obvious generalizations of old material
which occupied the last few pages, it is time to wake up now, because our result
for surfaces 1s not just an analogue of the result for curves.

11. THEOREM (HADAMARD). (1) If M is a convex surface in R3, then
K(p)=o0forall pe M.

(2) Let M be a compact connected 2-manifold. and f: M — R? an immer-
ston with K(p) > 0 for all p € M. Then

(1) The manifold M is orientable. and the normal map N: M — S§? C R?
is a diffeomorphism,

(i) The map f: M — R? is an imbedding. and f(M) is convex.

PROOF. The first part is immediate, for we have already seen thatit” K(p) < 0.
then M lies on both sides of M,.
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To prove (2), we first recall that since K(p) > 0, points of M near p all lie on
one side of M,. We choose N so that it always points on this side. Since this

gives us a continuous choice of N, it also gives us an orientation of M. To show
that N: M — S? is a diffcomorphism, we note first that N is always one-one,
since K = det Ny. So N(M) C SZis open. It is also closed, since M is compact;
so N(M) = S2. Now we need to use a few properties of covering spaces. The
fact that N: M — S is onto and locally one-one does not immediately imply
that N is a covering space map; however it is an easy exercise (Problem 4)
to show that this follows from the fact that M is compact. But S? is simply-
connected, and therefore has no non-trivial covering spaces. So N: M — S?
is a diffeomorphism, and we have proved (i).

To prove (ii), we consider a point p € M and the tangent space M, C R3¢ p)-
At least some points of f (M) lie on the same side of M, as N(p). Let f(q) be

a point on this side which 1s furthest from Mp. Then clearly N(g) = —N(p).
Suppose that f(p) = f(p') for some other p" € M. Since N: M — R? is one-
one, N(p’) cannot be either N(p) or —N(p) = N(q). So the tangent plane
M,y must cross the tangent plane M,. It is then easy to see that f(M) must

M,

N My
B>

contain points on both sides of M,. Let f(r) be a point of M furthest from M,
on the other side from ¢. Then N(r) must equal N(p), contradicting the fact
that N is one-one. Thus we have shown that / is an embedding.
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To show that f(M) is convex, we use a similar argument. Given p € M, we
Jjust have to show that all of (M) lies on the same side of M, C R3f(p) as N(p)
does. If there were points on the opposite side, and f(¢) were a point on the
opposite side which is furthest from M, then N(¢g) would have to equal N(p),
again a contradiction. <

This result naturally invites comparison with Theorem I1.1-8, which states
that a simple closed curve ¢ in R? is convex if and only if it satisfies ¥ > 0
or k < 0 (depending on the direction in which ¢ is traversed). The proof of
part (1) of Theorem 11 is much simpler than the proof of the corresponding part
of Theorem II.1-8. This is because the sign of the Gaussian curvature K has
a local geometric meaning, while the sign of « has none; the only meaningful
assertion about « is the global statement that it is > 0 or < 0 everywhere. In
part (2) of Theorem 11 we have the significant circumstance that we do not
have to assume that M is imbedded—this comes out as part of the conclusion.
The analogous assertion is false in the case of curves: the figure below shows
an immersed, but not imbedded, curve with ¥k > 0 everywhere. In one respect

(9

our result does not improve on Theorem 11.1-8, for in order to prove part (2),
we needed to assume the strict inequality K(p) > 0. Actually the result holds
even when we assume only that K > 0, but the proof in this case is much more
difficult (for further discussion, and references, see pp. IV. 82-83).

Our approach to surface theory has so far been very classical, but we are now
ready to jazz it up a bit. First we want to examine the moving frame approach
again, and write out explicitly all the equations (which in the case of surfaces
in R? boil down to almost nothing). In addition to their importance in the
remainder of this chapter, some of these formulas will be crucial in Chapter 6
(and the equations in the general case will be even more crucial in Chapter 7).

If Xi, X; is a positively oriented orthonormal moving frame on an oriented
surface M C R?, and we let X3 = v, then X, X5, X3 is a positively oriented
adapted orthonormal moving frame on M. There are just the following forms
to consider:

61,62 the dual 1-forms

2 . ~
wi = ~w) the connection form

Vi3,
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We want to relate these forms to the tensors and functions on M already con-
sidered. Notice first that 1 1s given by

I1=0'®6" +6%x6%
We also have
dA =6"A6%

where dA is the volume element determined by the metric I on M and the
given orientation. Since we have (see page 191T)

Y =s53,0" + 53,67 = 11X, X1)6' + 11(X2, X,)0°
Y3 =s,0" 4+ 53,07 = 11(X), X2)8' + 11(X3, X2)62,
we can write
N=y®6" +v] 6.
It is also easy to see that the Gaussian and mean curvatures

K =11(X), X)) - T(X2, X)) — [1L(X,, X7))?
H = H{IL(Xy, X1) + 11(X2, X2)}

are given by
YAy =Ko A 6?
YA~y A0 =2HO AG2

On the other hand, we have a much more important expression for K, in terms

of the connection form w?. We note first that equation (3) on page 16 now

reduces to
dowt = Q2.

Then Gauss’ equation (page 20) becomes simply
0=dwf —¥; Ay =do? + K6' A 62,
so that
dwt = —Ko' A 62,

Since this equation is equivalent to Gauss’ equation, it must somehow demon-
strate the Theorema Egregium, and it surely does, since the form wi does
not depend on the imbedding (it is the unique form with d6' = w? A 62 and
de? = —wf A BY). Some elementary treatments of surface theory proceed to
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usc this equation to define the Gaussian curvature of an arbitrary 2-dimensional
Riemannian manifold—it is only necessary to check that K does not depend
on the choice of the orthonormal moving frame; this is a special case of the
moving frame definition of the curvature tensor given in Chapter I 7. Finally,
we mention that the Codazzi-Mainardi equations (page 20) now become

dy; = wf A Y3
dy; = —wf Ay

An introduction to surface theory carried out purely in terms of this moving
frame and structural equation approach can be very frustrating. Instead of deal-
ing with geometrically tangible things like d N and II, one has only the 1-forms
w?, ¥}, ¥3 to play with, and the simplicity of the Gauss and Codazzi-Mainardi
equations as given above seems vitiated by their lack of intuitive geometric con-
tent. But this simplicity is a great advantage in proving theorems, and can be
attributed, in large measure, to the fact that they express integrability condi-
tions so neatly in terms of d. For example, they allow us to give a proof of the
fundamental theorem of surtace theory which uses the differential form version
of the Frobenius integrability theorem (Proposition 1.7-14), instead of mucking
around with the classical integrability conditions; we will present this proof;, in a
more general situation, in Chapter 7. The truly overwhelming advantage of the
moving frame approach becomes apparent when one is seriously investigating
questions about the shape of surfaces in space; any information one can hope
to get has to come out of the three simple equations

2 3 3 3 2 3 3 2 3
doi = =y AY3, dYi =i AY;3, dys = —wp Ay
Usually one just picks a frame suited to the problem and reads off the informa-
tion from these equations. As a very simple example, we consider an all-umbilic
surface M C R3. In this situation any adapted orthonormal moving frame
X1, X2, X3 on M is suitable (the hypothesis that p is an umbilic essentially says
that all orthonormal frames at p are indistinguishable from one another), and
we have
yi=xr0"  i=1.2
tor some functon A on M. Thus
dh A8+ hd0' = dy} = w? A Y3 = ho? AP
dl A6 +1dB* = —rw? A B,
while
de' = w? A 6?

do? = —w} A 6"



Elements of the Theory of Surfaces in R 71

So we find that
dArnbi =0 =12

But this implies that the 1-form dA 15 0, so we find, once again, that A is constant.
More interesting examples will occur in later chapters.

The moving frame approach was brought in at this point not to launch
an extended investigation into the geometry of surfaces—that occurs in later
chapters—but with a completely different goal in mind. We want to show that
the Gauss and Codazzi-Mainardi equations for surfaces in R? are, from the
proper point of view, nothing more than the “equations of structure” of the Lie
group SO(3), and that the Fundamental Theorem of Surface Theory reduces
to Theorems I.10-17 and I.10-18 about Lie groups. After doing this, we will
then proceed to bring another group into the picture by examining properties
of surfaces in R® which are invariant under the group of maps 4: R? — R?
of the form A = T o B for T a translation and B € SI(3) = group of 3 x 3
matrices with det = 1.

We begin with some preliminaries about notation. Nowadays, an “affine”
map A: R" — R” is usually defined to be one of the form A =T o Bfor T a
translation and B € GL(n, R). Thus the proper Euclidean motions, A =T o B
for B € SO(n), might be described as “special orthogonal affine” maps, while
maps A = T o B for B € SL(n) might best be described as “special linear affine”
maps. We will employ this terminology regularly for maps A: R” — R”, but
we will also find it convenient to abbreviate the phrase “special linear affine” to
“special affine” when we speak of such concepts as “special affine curvature”.
Thus when we speak of the “special affine geometry of surfaces” in R*, we
mean properties of surfaces invariant under special linear affine maps. On
those occasions when we want to consider properties of surfaces invariant under
all affinc maps, we will emphasize this fact by speaking of “gencral affine”
Invariants.

We will also include a brief review of the relevant facts about Lie groups
(pp. I1.36—-37), since we are going to make a slight change of notation. If G is
a Lie group with Lic algebra g, then we define the natural g-valued 1-form* o
on G by w(@)(X (1)) = X. where X is the left invariant vector field with
X(e) = X. If Xi.....Xp is a basis of g. then we have & = Z,’-lzl o' X; for
I

ordinary (R-valued) left invariant 1-forms @', and these forms @' are a basis

for the left invariant 1-forms. These forms are important because two maps

*We are now using o to distinguish this form on G from the forms a)]2 for a moving
frame on a surface. This wasn't important in Volume 1L, where we considered only
curves.
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f,g: M — G differ by a left translation [f = L, o g for some ¢ € G] if and
only if f*(w') = g*(w') for all i (Theorem 1.10-18). When G is a subgroup of
GL(n,R), with P: G —» GL(n,R) C R”* the inclusion map, then we can form
P~!.dP, where P~ denotes (somewhat confusingly) the map 4 +— A~', and
the differential dP of P can be considered either as an R**-valued 1-form on G,
or as the matrix of 1-forms dP = (dx'), where dx’/ denotes the differential
of x'/|G. Then (pp. 11.36-37) P~" . dP is the natural g-valued 1-form w on G.
Among the entries of this matrix will be a basis for the left invariant 1-forms
on G (the entries are generally not linearly independent, since the forms dx*/
are not linearly independent on G). Soif f: M — GL(n,R) s a C* map, and
we want to look at the forms f*(w') for a basis {»’} of left invariant 1-forms
on G, it suffices to look at the entries of the matrix

frptapry=f7'.df.

To study properties of immersions f: R? — R? which are invariant under
special orthogonal affine maps of R?, we need to define an associated map
af: R? - SO(3). This can be done in the following way. Let X3 = N be the
normal map of f, and let Xj, X2 be the result of applying the Gram-Schmidt
orthonormalization process to the-vectors fi, f>. We then have an adapted
orthonormal moving frame X, X2, X3 on R2, and if we also consider X; as
a column vector, then oy = (Xj, X2, X3): R? — SO(3) is the desired map.
Notice that we can reconstruct fi, f>» from X;, X2 when we are also given the
functions g;;.

To find af*(wi), where the o are a basis for the left invariant 1-forms on
SO(3), we look at the entries of the matrix of 1-forms

a= af_l ~day, with day =ayf-a.

This equation means that

0 —dly —ds3y
(dX1.d X2, dX3) = (X1, X2, X3) | ax 0 —uaxn],
aszy asn 0

where the a;; are 1-forms, and the X; and d X; are considered as column vectors;
the latter equation stands for

dX| = axn X2 +an X3, etc.
Thus. if V/ denotes the covariant differentiation in R, we have

Vix X1 = dXi(X) = a2 (X) Xy + an(X) X3, etc.
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But
VX =0} (X) - Xa + ¥ (X)- X3, etc.

(where w?, ¥}, ¥} really denote f* of the corresponding forms on image f).
Thus we see that

The forms w?, Y}, Y3 are precisely op*(w') for o' a basis of the left invariant
1-forms on SO(3).

Theorem L 10-18 then tells us that for two immersions f, f: R2 — R, the
maps s, o j: R? — SO(3) differ by an element of SO(3) if and only if

-2 2 73 373 3.
Wy =i, Yi =Y, ¥ =¥;;

here the forms wlz, lﬁf, lﬂ; are formed for the moving frame X1, X2, X3 = N,
where X1, X are obtained by applying the Gram-Schmidt orthonormalization
process to fi, fo, while the forms @2, lﬁl ,lﬁz are formed for the moving frame
X, X5, X3 = N, where X;, X> are obtained by applying the Gram-Schmidt
orthonormalization process to fl, fz

From this fact we can easily derive the first part of the Fundamental The-
orem of Surface Theory. Tor if g;; = gi;, then X1, X, are the same lin-
ear combination of f_l,f_z as X1, Xy are of f1, fo. Consequently, if we are
also given that l_ij =1l = I_I(f_,-,f;-) = II(fi, f;), then we conclude that
I_I(/\7,-,/\7j) = II(X;, X;). The formulas on page 69 then show that lﬁf = lﬁf
and 3 = 3, while the equation @? = w? follows from g;j = g;. Thus
af,a gz R2 — SO(3) differ by an element of SO(3); this implies that ( fi, f2, N),
(fis f>, N) differ by an element of SO(3), and hence that f, 1 differ by a special
orthogonal affine map of R?.

In the case of curves, the equations of structure of SO(#n) or SL(n, R) could not
give any interesting information, since there are no non-zero 2-forms on R. But
they do give information for surfaces. To figure out the equations of structure
of SO(3), we proceed as follows. Since the Lie algebra

0(3) = {tangent space of SO(3) at I}

is just the set of skew-symmetric 3 x 3 matrices, the matrices

0 -1 0 0 0 -1 0
X1= 1 0 0 , X2= 0 0 0 , X3= 0
0 0 O 1 0 0 0
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are a basis for 0(3). The bracket operation mn b(3) is (pp. 1.378-379)
[M,N]=MN - NM.
In partcular, we compute that
(X1, X2l = X3, [X, X3]=-X2, [X3, X=Xy,

so that if we write
3
k
(X, X1 =D Ch X,
k=1

then the “constants of structure” Cl.’;. are

Cllz =0 C122 =0 C132 =1
Cly=1 CH=0 G5y =0.

Now let @ be the left invariant 1-forms on 0(3) with ®!(I), (1), ®*(I) dual
to X1, Xa, X3. The equation on pg. I.396 (which is equivalent to the “equations
of structure” on pg. 1.404) then gives

do' = -0’ Ao
do? =o' Ao
do’ = —0' A’
Now we have seen that if f: R? — R? is an immersion, then the forms ],
‘//13, \,//23 for f are given by
of = as* (')
P = o (@?)

¥ = ast(e?).

Therefore
do? = af* (de') = —as* (@ A @') = —y] AY;
d\//l3 = af*(d(oz) = —(th*((n)l Awl) = a)l2 A w;
dw; = af*(dw3) = —01f*((n)1 A®Y) = —a)f A %3-

As promised. these are precisely the Gauss Equation and Codazzi-Mainardi
Equations, i1 the form given on pages 69-70. The reader can now easily see
that the second part of the Fundamental Theorem of Surface Theory follows
immediately from Theorem §.10-17.
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For the remainder of this chapter* we will be considering the special affine
theory of surfaces M C R?. If we try to follow the approach used for ordinary
surface theory, then instead of working with an adapted moving frame X, X5, v
on M which is orthonormal, we want to work with an adapted moving frame
X1, X2, Xz on M withdet(X,, X2, X3)=1. It f: U > Misan immersion (for
U C R? open), then you might think that we should use the moving frame

1
Ydet(fi, fo. N)

But this moving frame has no significance for special affine geometry, for it is
not a “special affine invariant”™ if 4: R* — R? is special linear affine, then the
normal Ny, s for Ao f is not necessarily the image A4,(Ny) of the normal Ny
for f. As a matter of fact, not only the length, but even the direction of A,(Ny)
will be wrong; the whole concept of “orthogonality” has no meaning in special
affine geometry. Our first problem, therefore, is to pick out a “special affine
normal” for M which is a special affine invariant. This is going to take quite a
bit of doing,.

In ordinary surface theory, the normal v(p) is defined in terms of the tangent
plane M, of M, which is the first order surface which approximates M up to
order 1 at p. Since special affine geometry always seems to involve higher
order approximations to our given geometric object, we might expect to find
a reasonable candidate for the special affine normal by looking at the second
order approximation to our surface. As before, let us assume that p = 0 € R?
and that the tangent plane at p is the (x, y)-plane, so that M is the graph of
a function #: R2 — R with /(0,0) = /,(0,0) = h(0,0) = 0. The quadratic
surface approximating M up to order 2 at 0 is

(afr,afr,aN), where a=

P = {(s,t, 2 (h1(0,0) - s + 27115(0,0) - st + h(0,0) - £%))}.

We have already seen that this surface does not depend on the particular choice
of a basis in RZ: if X = X1, Xy is any basis of R? and X (s, 1) is the third
coordinate of the point of M lying above sX| + X3, then the surface

Q = {(sX1 + X2, 1(1%11(0,0) - 52 4+ 21%12(0,0) - 51 4+ h¥2,(0,0) - 12))}

is exactly the same as P. We also noted that we still have @ = P when we
change the direction of the z-axis; it is just as easy to see that Q = P even when
we change the unit on the z-axis, so that we are describing M in terms of the
“X1, X2.(0,0, ¢) coordinate system”.

*This material will 1ot be 1eeded later, except i1 Problemn 4-16. Problems for this
chapter are on page 134.
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In all this arbitrariness, however, one essential prejudice of ordinary geome-
try remains: we have always picked the third axis perpendicular to the plane
of the first two. Suppose now that we choose X, X> in R2 and a linearly inde-
pendent vector X3 which does not necessarily point along the z-axis. We can

X3

still describe M as a graph in terms of the “(X7, X2, X3) coordinate system”:
we let i(s,t) be the X3 component of the point of M with s = X; component
and t = X> component. Now we look at the surface

Q = {sX; + X2 + 1(111(0,0) - 2 + 25115(0,0) - st + F125(0,0) - £2) X3}

This surface is not the same surface as P. In fact, consider the case where
X3 = (0,0,1) + AX; + X for certain numbers A, u. To say that M is the
graph of & in the X1, X2, (0,0, 1) system means that

() M = {sX| +1tXy + h(s,t) - (0,0, 1)} [he(0,0) = 0];
similarly, if M is the graph of h in the X1, X2, X3 system, then
(2) M = {sX; + tX> + h(s,t) X3}
= {[s + Ah(s, )] Xy + [t + ph(s, 01Xz + h(s,1) - 0,0, 1)}
[114(0,0) = 0].
Comparing (1) and (2) we find that
h(s,t) = his + Mi(s, 1), t + ph(s,t)).

From this we easily compute that flaﬂ(O, 0) = h4p(0,0), so that the approximat-
ing functions of s and t

1111(0,0)s2 + 2/112(0, 0)st + F122(0, 0)£>
h11(0,0)s2 + 2/115(0, 0)st + H122(0, 0)22
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are the same; this means that the approximating surfaces

P = {(sX1 + tX2, L (11(0,0)s% + 2/2(0,0)st + h22(0,0)r%) )}
0 = {sXy + Xz + L (h11(0,0)s? + 2/12(0,0)s7 + h22(0,0)1%) X3}
= {sX1 + tX2 + L (h11(0,0)5% +215(0,0)st + /122(0, 0)1%) X3}

are definitely different. In fact, we clearly have
Q = A(P),

where 4: R?* = R? is the affine map which keeps M), fixed and takes (0,0, 1)
to X3. All we can say is that Q does not change when we multiply X3 by a
constant, just as P does not change when we multiply (0,0, 1) by a constant; we
can merely speak of the osculating paraboloid corresponding to any given line
through p which does not lie in Mj.

Thus we see that we do not get a special affine invariant osculating paraboloid
simply by looking at M up to order 2. There are some things that we do get,
however. Consider first a fixed basis X;, X2 for M, = (x, y)-plane. We have
just seen that the matrices

S (11“(0,0) hlz(o,O)) , (1311(0,0) /512(0,0))
= and S =1 - . ,
h21(0,0)  £h22(0,0) h21(0,0)  h22(0,0)

defined in terms of the third axes (0,0,1) and X3 = (0,0,1) + AX; + Xz,
respectively, are exactly the same; if we had picked X3 to be the most general
possible choice, X3 = (0,0,¢) + A X + (X2, then S” would clearly be

On the other hand, suppose we consider the coordinate system
anXy +an Xz, anXi+ankXz, (0,0,1).

Equation (x) on page 37 shows that the matrix S’ in this case is related to the
matrix S by

S’=AtSA, A:(a“ 012)’
azy  dx2

where ! denotes the transpose. In general, if we are given any two bases

(X1, X2, X3) and (X', X'2, X'3) of R3p, with X1, X2 and X1, X'2 bases for Mp,
and

X3 =cXs+ 22X +ukXa,
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then the matrices S and S’ are related by

1
(1) S’ =~ A'S4,
p

where 4 = (a;5) 1s given hy
2

(2) X',-:Zaj,-Xj.
=1

From equation (1) we see that
detS'20 & detS20 and S’ =0 & S=0.

Thus we can determine whether p is an elliptic, hyperbolic, parabolic, or
planar, point of M by means of an arbitrary basis (X1, X2, X3) of R3, with
X1, X2 € M,. This clearly implies that the “type” of a point (elliptic, hyper-
bolic, parabolic, or planar) i1s a “general affine invariant™: If A4: R} > R3is
any affine map and M C R? is a surface, then A(p) is the same type of point
on A(M) as p1son M.

Consider, for the time being, an elliptic point p € M. As we observed in the
proof of Theorem 11, there is a natural orientation for M, the one that makes
an ordered basis (X7, X2) of M, positively oriented whenever (Xj, X3, X3) 1s
positively oriented in R3, for any X3 € R%, which points “inward” (that is, in
the direction of the osculating paraboloid). Now any basis X1, X2, X3 € R3p
with X1, X2 € M, determines a matrix S = (s;5), and we can use S to define
an inner product on M, hy

(Xi, Xj) =545z

this inner product is positive definite if and only if X3 is inward pointing, If
Xi. X2. X3 happens to be orthonormal. then the inner product is just the second
fundamental form II of ordinary surface theory. Now consider another basis
X't X'5. X'3. with X'3 inward pointing.  This determines a matrix S'. and
hence another positive definite inner product { . ) on M, by

(X,i.X,j), = S,ij.
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Equation (1) shows that the inner products ( , ) and ( , )" are closely related.
Indeed,

(X’I.’ X’j)’ = s’,-j = (constant) - Zakisklalj
k.l

= (constant) - Zak,-alj(/\’k- Xr)
k.l

= (constant) - <Z ai Xk, Zalj XI>
k )

= (constant) - (X';, le) by (2),

so that we have
( ,) = (constant) - { , ).

By restricting our attention to inward pointing X3, we thus obtain a class of pos-
itive definite inner products on Mp, any one being a (positive) constant multiple
of any other. We can express this by saying that we have defined a “conformal
structure” on M, (compare pg. I1.296). This conformal structure is mvariant
under all affine maps, provided only that they are orientation preserving: If
A: R} — R? is any orientation preserving affine map and p € M C R? is an
elliptic point, then the class of inner products defined on M), is precisely A* of
the class of inner products defined on the tangent space A(M)4(p) of A(M)
at A(p).

A conformal structure on M, does not allow us to pick out orthonormal
bases, but it does make sense to consider bases X, X2 of M, with

(Xi, Xj) = (constant > 0) - §;,

since this condition does not depend on the choice of the inner product ( , ) in
our conformal structure. Such bases may be called “quasi-orthonormal”. They
can clearly be characterized quite simply as follows: for any inward pointing
vector X3 € R3,. the corresponding osculating paraboloid P is given by

P = {sX +1X> + (constant > 0) - (s> + 1) - X3).

These considerations can be made in a less geometric way: but with the calcu-
lations going through more smoothly, by using moving frames. For an adapted
moving frame Xj. Xz. X3 on a surface M C R? we will still use the dual and
connection forms ¢* and g for moving frames in R3, and we again let 61,602
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be the dual forms determined by the moving frame X7, X> on M. Asin ordinary
surface theory, we have

moreover the first structural equation,
3
3 3
d¢ == Z Wy A ¢V’
y=I1

still implies that
2

0= 6*Ay} onTM,
k=1

so that by Cartan’s Lemma there 1s a matrix S = (s;5) with

2

(@) ¥l =) 560 onTM
i=1
Sij = Sji.

We will soon be able to compare this matrix S with the one defined previously.
First we want to consider another adapted moving frame X'y, X2, X3 on M.
The matrix a with X'y = Y gage Xg must be of the form

ap  dip dps

a=|ay ax axy |,
0 0 aiss
and we easily find that
—1 . -1 1
(b) (@ )3 =0 =12 (@ )33 = —.

as33

The dual forms ¢'* for the X'y are given by (see pg. II1.282)
(©) $'=a"'¢p = p=a-¢

2
— Gi = Zaijelj,
Jj=1
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while the connection forms g are related to the yg by (pg I1.280)
(d) V' =alda+a Y.
In particular,

¥’ = (" da)y + (@ pa)s

3 3
= Z(a'l)aa dag; + Z (@ e ¥gag
a=I1

o, f=1
2
=0+ Z zl;‘//j}“ji by (b).
j=1

Hence
13 1 Qk
V= — ) ajisi
J.k

ass

1
= a_ Z aj,'Sjkaklell.
Bkl

So if we also write
2
/; — Zs/ijeli’ Slij — S/jiy
i=1
then the matrix S’ is related to the matrix S by
I 1 t
(e) S'=-—A"S4,
33

where A is the 2 x 2 matrix 4 = (a;;).
As a first consequence of this equation we see, what is not a prior: clear, that

The matrix S(p) depends only on the vectors X1(p), X2(p), X3(p).

Taking X3 to be a paraliel vector field in R3, we easily see that S(p) is, in fact,
the same as the matrix S on page 77, for the basis X1(p), X2(p), X3(p) of RBI,.
Then equation (e) is just equation (1) on page 78. As before, we then see from
equation (e) that if p is an elliptic point, then the inner product

Y si(p)-6'(p) ©67(p)

Lj
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on M, is well-defined up to constant multiple, and hence, by considering only
the case where X3(p) is inward pointing, we again obtain the (general
orientation preserving affine invariant) conformal structure on Mp. Clearly
the basis X1, Xo of M, is quasi-orthonormal [that 1, (X;(p), X;(p)) =
(constant > 0) - §; ] if and only if

S(p) = (constant > 0} - ((l) (l)) or ¥2(p) = (constant > 0) - 6°(p).

Now from among our class of mner products on M, we can distinguish a
g p p g
particular one { , },, which will be a special affine invariant. We do this by
defining X, X» € M, to be orthonormal with respect to { , }, if and only if
g p p p y

_ (1 0 for all inward pointing X3 € R3, with
() S(p)_(o 1) det(X1, Xa, X3) = +1

(the sign depending on whether or not (X, X3) is positively oriented). To check
that this 1s well-defined, note first that if we also have

dC[(X],Xz,X/3) = =+l1

for an mward pointing X'3, then clearly as3(p) = 1, so cquation (e) shows
that S’(p) = S(p); consequently, condition (%) does not depend on the choice
of X3. Morcover, for fixed X3 € R3p, and different X'y, X'» € M, equation (e)

shows that §' = ((l) (l)) if and only if 4*4 = I, which means that X'y, X', is

related to X, X3 by the orthogonal transformation 4; hence the inner product
which makes X, X> orthonormal also makes X', X'; orthonormal. It should
be clear, from the verv definidon, that { , }, 15 a special afline invariant: If
A: R — R? is special linear affine, and p € M is an elliptic point, then the
nner product { , $, on My is A* of the mner product { . $4(p) on the tangent
space A(M)a(py of A(M) at A(p). Clearly a basis X1, X; € M, 15 orthonormal
with respect to { ., if and only if

vipy=6'(p)  or P ={sXi +1Xa+ L(sT + D) X3

for everv mward pointing X3 € R3p with det(X;. X>. X3) = 1.

On a surface M with all points elliptic, we now have an inner product { . $p
defined on each M. and thus we have a Riemannian metric { .} on M. "T'his
Riemanmnian metric will also be denoted by I, and called the special affine first
fundamental form of AM. If it seems strange that we can find a special athne
invariant nietric on elliptically curved surfaces in R¥ even though there is clearly
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no special affine invariant metric on R? itself, it might help to observe that we
have essenually the same situation for 1-dimensional manifolds M in R3, for we
can define the unit tangent vectors of M to be those of the form ¢(0), where
¢: [0,1] = M is a curve parameterized by special affine arclength. Once again
the manifold M cannot be too flat (and in fact the requisite condition is more
stringent, since it involves third derivatives). Naturally, if f: M — R3 is an
immersion with all points of the image clliptic, then we define the special affine
first fundamental form Iy of f to be the tensor Ir = f*( , }) on M, where
{ , } is the special affine first fundamental form on f(M). Notice that this is
not completely analogous to the definition in ordinary surface theory, where we
can simply define Iy = f*( , ) for ( , ) the usual Riemannian metric on R3;
it is much closer to the definition of Ils. In fact, we have already noted that
{ , tp is a multiple of 1I(p); just which multiple will soon be determined.

When f: U — R* for U C R? open, and all points of f(U) are elliptic, we
define the functions g;;: U — R? to be the components of 1 with respect to
the standard coordinate system (s, ) on R?, so that

If:g11ds®ds+glzd3®dt+921 dt®ds+g22dt®dt.

We would naturally like to be able to compute the g;; in terms of f. We first
take the case where f' is simply

S(s, ) = (s,t,h(s,1)), h(0,0) = /11(0,0) = h,(0,0) =0,
with p = f(0,0) = 0 € R*. If Xi, Xa, X5 € R3; is the standard basis, then the

corresponding osculating paraboloid P is the graph of
a = hy;(0,0)
(5,t) > %(0152 +2Bst + ytz) for B = h12(0,0)
vy = h1,(0,0).
If p is an elliptic point, then ay — B2 > 0. For the sake of concreteness, suppose

also that P lies above the (x, y)-plane, so that X3 is inward pointing. There is
another basis X'; = Z?:l aij Xi of R? such that P is the graph of

(s,t) — %(s2 +12)

in the X'y, X'5, X3 system. Equation (1) on page 78 (or equation (¢) on page 81)
shows that the matrix 4 = (a;;) sausfies
(01 ﬂ) (A A
14

b ) el ) =

= det 4 = (ay — B2~
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Now P is also the graph of (s,f) — %(s2 +£2) in the (AX'1, A X', A2 X3) coor-
dinate system. In order to have

1 =det(A X1, A X5, A2 X3) = A det(X7), X2, X3)
=2 detd = k4(ay - ﬂz)_”z,

we must take
A= YVay — B2
So the vectors

X,/1=(8/a]/—ﬂ2)X/1, XNZZ(X/C(]/—ﬂZ)X/

are orthonormal with respect to { , }o. To figure out the numbers ¢;;(0,0), we
note that if B = (b;;) is the inverse of the matrix 4, then

"
b]lX iy

2
j — i /' =
Xl ;bﬂ/\/] /—Cl]/ ,82 Z

and consequently

417(0,0) = <X,,x>o—m(Zbk,Xk,Zbk,X“>

1
N bbby
“T/—ﬂZI; kiUkj

1
= ———(B'B);; =

Vay — B?

-1 41
(497147,

1
Vay — g2

Using (1), we see that

hi;(0,0)
2) 4:j(0,0) = ———e.
Ydet(h;;(0,0))
This can also be written
3) ¢1j(0,0) = ——2—(0,0),
( ' / \/4 det(d,-j)

where di; = det( f1, fa, fij)-

These calculations were all carried out for the case where f is of the form
f(s,1) = (5,1, h(s,1)), with h(0,0) = h(0,0) = h2(0,0) = 0. We could try to
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deal with the general map f: U — R? by reducing it to this case. For example,
if f1(0,0) and f>(0,0) both lie in the (x, y)-plane, we could first determine a
function / by the condition

(SN0, 25,0, 25,00 = fU) = {(s,18,h(s, 1))}
= h(f'(s.0), f2(s,0)) = f(s,0),

use this equation to relate the /;;(0,0) to the f£;(0,0) and f;;(0,0), and then
use (2) to find ¢;;(0,0) in terms of these numbers (we would still have to take
care of the general case when f1(0,0) and f>(0,0) do not lie in R?). A much
simpler course of action is to guess from (3) that the answer should be

_ divds @ ds + dyads @ dt + dy dt @ds +dy dr @ dt
¥ det(d,-j)
2
1

= — di;ds' @ ds’, using (sl,sz) for (s,1).
V4 det(d,-j) Z Y

i j=1

Now this guess cannot be pre(:lsely correct, for if we define f(s s%) = f(s%,s ),
then we have d,j (s',s?) = det(fl,fz,flz)(s ,52) = det( f2, fi, fi2)(s2,s!) =
~d;j(s%,s'), so our formula changes sign. The problem, of course, is that fis
orientation reversing if /" is orientation preserving. The right guess is that the
above formula holds whenever f: U — M is orientation preserving. To prove
this, we note first that the right side is clearly a special affine invariant, since
it involves only determinants d;;; consequently, there is no loss of generality
In assuming that the tangent plane at the point in question is the (x, y)-plane.
We still based our calculations on a very special parameterization, so we want
to check that the right side is “invariant under orientation preserving change
of parameter if f:U — R?is any immersion (for U C R2 open), and

= (p', p?): V - U is an orientation preserving diffeomorphism (for V C R?
Open) then we want to check that

2

1 ~ . .
dij ds' ® ds’) =——— dij ds' @ ds’,
( Vdet(d;;) ’;1 \4/det(d,-j) iél

where the c?,-j are the d;; for f = f o p.

4
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Now
2 2 2 2
(5) p*( Z d;j ds' ® dsj) = Z (dij o p)(z pipcls") ® (Z s ds”)
i, j=1 i j=1 p=I o=1
22
= Z Z plop’sldij o p)ds® ®ds®
i,j=1p,0=1
2 2
= Z ( Z plip°ildps o [J)) ds' ® ds’.
i,j=1 ‘p,o=1

On the other hand, since

2
fi=Di(fop) =) p'ilfoop)

p=1

2 2
fii =Y pPilfoe p)+ Y pPir®i(fos o P,

o=1 p,0=1

we have

6) dij = det(fi, f2. fij)
2 2
= det(z(/p opy-pM. Y (feop)-p'a

n=1 v=1

2 2
S 2o+ Y Puhae )
p=1

p,0=1
2 2 2
= dCt( uop)-p. Y (foop) p'a 3 PPip®i(foo © P))
=1 v=1 p,o=1
2
=3 php'a Y, phip®idetfuo potvo Py fos o p)
w,v=1 p,0=1
= (det p') - [ Z PPip®j(dps © 17)].
p.o=1

and consequently

2 2

2 2
(7) Z c?,-j ds' @ ds? = (det p) Z ( Z pPipildps © p)) ds' @ ds’ .

ij=1 ij=1 ‘p.o=1
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If it weren’t for the factor (det p'), the tensors in (5) and (7) would already be
the same. From (6) we easily see that

®) det(dij) = (det p')* - det(dyj o p)
— V det(ci,-j) = (det p') - ¥V det(d;j o p) for det p’ > 0.

Together with (7), this gives exactly the equation (4) which we want. We have
thus shown that for orientation preserving f: U — M we always have

2
1r = Z Yij ds' @ ds’
i,j=1
g.. _— di.
Y V4 det(d,-j)7

This formula allows us to compare the special affine first fundamental form Ir
with the ordinary second fundamental form Hy, whose coefficients /;; are

lij = (n, fij) = <%m>

_ det(f1, f2, fij) _ dij
/i x fal det(gij)

for

dij = dC[(fi, f27 ﬁj)

In the classical literature, the tensor Ir is introduced a little differently. One
simply notes that > dij ds’ ® ds/ is a nice tensor to consider, because it is
a special affine invariant. Then one asks whether it is also an invariant under
change of parameter. After deriving equation (7) one sees that it isn’t, but upon
noticing (8), one realizes that dividing by ¥ det(d;;) will give a tensor that is
invariant under orientation preserving change of parameter, yet still a special
affine invariant.

Now consider a hyperholic point p € M, and a basis Xi, X2, X3 € R?, with
X1, X € M,. This again determines a matrix S = (i), and we can still define
an inner product on M, by

(Xis X)) = sij.

but now the inner product is merely non-degenerate, and neither positive defi-
nite nor negative definite. Any other such inner product. defined for a different
basis, is a constant multiple of this one. If we want these constant multiples all to
be positive, then we will have to have a way of selecting a permissible direction
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for the vectors X3. So we have to choose, arbitrarily, an orientation for M, and
then define X3 to “point inward” if and only if (X7, X3, X3) is positively oriented
in R3, whenever (Xj, X2) is positively oriented in M,. By considering only
inward pointing X3 we obtain a class of non-degenerate inner products on M),
any one being a positive constant multiple of any other. If A: R — R’ is
any affine map and we give the tangent space A(M)(p) the orientation which
makes Ay: M, — A(M)4(p) orientation preserving, then the class of inner
products on M, is precisely A* of the class of inner products on A(M)4(p)-

In the present set-up it makes sense to consider ordered bases X, X> of M,
with

(X],X]) = —(Xz,Xz) = constant > 0
(X1, X2) =0.

These ordered bases will again be called “quasi-orthonormal”. For any such
ordered basis, and any inward pointing X3 € R3,, the corresponding osculating
paraboloid P is given by

P = {SXI + tX> + (constant > 0) - (s? — IZ)X:;},
In terms of moving frames we have
3 1
= (constant > 0) - 0
S(p):(COnstant>0).(l 0 ) or I//13([7) ( ) (f)
0 - ¥>(p) = —(constant > 0) - 07(p).

From among our class of inner products on M, we can again distinguish a
particular one { , },. We define an ordered basis X;, X> to be “orthonormal”,

(X1, X1ty = —{X2, Xabp =1
(X1, X2, =0,

Il

if and only if S(p) = ((l) —Ol) for all inward pointing X3 € R3, satisfying
det(Xy. X, X3) = 1. The verification that this is well-defined is similar to the
case of an elliptic point. If A: R3 — R3isamap of the form A4 = ToB, where T’
is a translation and B: R® — R? is a linear map of determinant %1, and we give
the tangent space A(M)(p) the orientation which makes A, : M, — A(M)4(p)
orientation preserving, then { . }p Is A* of the inner product { . ba(p) ON
A(M)a(p). Clearly an ordered basis (X1, X3) of M, is orthonormal if and
only if

wip) =6"(p)

I/fg(p)Z—Qz(p)} or P:{SX1+IX2+%(S2—[2)X3}
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for all inward pointing X3 € R3p with det(X7, X3, X3) = 1.

On an oriented surface M with all points hyperbolic, we now have an in-
ner product { , }, defined on each Mp, and hence an “indefinite Riemannian
metric” { ,  on M. Once again we also denote { , b by I, and call it the
special affine first fundamental form of M. If f: M — R3 is an immersion of
an oriented surface with all points of the image hyperbolic, then we define the
special affine first fundamental form 1y of f to be the tensor Iy = f*({ , })
on M, where { , } is the special affine first fundamental form on f(M), when
f(M) is given the orientation that makes f orientation preserving,

When f: U — R?, for U C R? open (with the usual orientation), and all
points of f(U) are hyperbolic, we again define functions g¢;;: U — R3 by

If=911ds®ds+glzds®dt+921 dt @ ds + 41, dt @ dt.

Again take the case where f(s,t) = (s,¢,h(s,t)), with p = f(0,0) = 0 € R?
and Mp = (x, y)-plane. If X/; = ZL] ai; X;i is a new basis of R? such that P
is the graph of

(s,0) > (s> = %)

in the X'y, X', X3 system, then we have
R Y R
= (5 7)-w (o L)
= detd = (8% - ay)-l/z.
As before, we see that the vectors
X" = (VB2 —ay)Xx', X'y = (VB2 —ay)X"

satisty

(X", X b0 = —4X"2, X % =1
(X", X 2% = 0.
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So, ntroducing the matrix B as before, we have

2 2
1
4(0,0) = {Xi, Xjbo = ——< b X, bij”k>
4\/!‘32 —ay 1; 1; 0
1
= 4 ﬂz —ay ) (bliblj _bZinj)

1 10
Aﬂz—ay[ 0 =1/ Ly
1 10
gl ),
VB —ay [( SRR ij

d::
;7(0,0) = —2——(0,0).
4 ) V4 —dCt(dij) )

The same calculations as before show that this formula holds for any f: U —
R3. We can refer to the elliptic and hyperbolic cases jointly by means of equation

Thus (I') gives

2
(I) If = Z gij dsi®dsj
i,j=1
d,'j

Yldet(d;j)l’

If M consists entirely of elliptic points, then the map f: U — M must be
orientation preserving when M is given its natural orientation, and it M con-
sists entirely of hyperbolic points, then M must be given the orientation which

for gij = dij = det(fi, f2. fij)-

makes f orientation preserving. (Henceforth we will not bother to mention the
subsidiary conditions on orientation which must be added to all our considera-
tions.)

Finally. what do we do at points p € M which are flat (parabolic or planar)?
The answer is. we don’t do anvthing. We do not define { . and we cannot
expect to. To see that this must be so. just consider the surface R? C R, consisting
entivelv of flat points. If we could detine a metric ¢ . on R? which was a
special affine invariant. then we would have to have A*{ .} = { . } for every
special limear affine map A4 from R? to R2. since such an A can always be
extended to a special linear affine map A”: R} — R3. But of cowse. there is no
metric on R2 which is invariant under all special linear affine maps. In affme
geometry we will simply always assume. without exphcitly mentioning it again.
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that all surfaces have no flat points. Thus connected surfaces will consist either
entirely of elliptic points, or entirely of hyperbolic points.

After all this work, we are hardly any closer to the problem of picking out a
“special affine normal”. In order to do this we will have to consider third order
approximations to M. We will still assume that p = 0 € R? and that My 15 the
(x, y)-plane. Choose some vector X3 € R? which is not in R? = (x, y)-plane.
For every basis X = (Xj, X2) of R?, we can then consider the function 4%
which describes M in the X}, X3, X3 coordinate system, and we can look at the
quadratic and cubic polynomials

L(®11(0,0) - 5% 4+ 28%1(0,0) - st + h%55(0,0) - 1?)
%(/’ZX“](O,O) . S3 + 3/1X112(0, 0) - S2[ + 3/1X122(0,0) . Sl2 + /1X222(0,0) . 13)

which appear in the Taylor series for #X. As on page 37, we can also define
functions ®X, ¥X: R? - R by

OX(sX) +1X) = 5(h%11(0,0) - 57 + 2h%12(0,0) - 51 + h%,,(0,0) - 12)
VX (sX) +1X2) = L(0%11100,0) - 5> 4 3h%11,(0,0) - 5%
+31%122(0,0) - 527 + 1%555(0,0) - £3).

All the ®X are really the same function ®: R? — R, and all the ¥X are really
the same function ¥: R> — R. We have already checked this for the ®X’s,
using the relation

2

(l) hxaﬂ(oi 0) = Z ajaakﬂhjk(0,0);
k=1

the check for the WX’s is similar, using the easily derived relation

2

(2) hxaﬁy(0.0): Z ajoagpdry,hjg(0.0).
j.k.=1

Remember that these functions ® and ¥ do depend on the original choice
of X3. We would now like to ask if there is a particular choice for the direction
of X3 which will make the functions ® and W be related to each other in some
especially nice way: so the real problem here is to formulate a definite question,
by deciding on a suitable criterion for declaring that ® and W are nicely related.
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We now find ourselves placed in a purely algebraic situation, which we can
formulate as follows. A function ®: R? — R will be called quadratic if for a
basis X, X2 of R? we have

PsX;+1tXo) = (D“SZ + 2P, 8t + (Dzzlz,

for some numbers ®;x. More generally, for an n-dimensional vector space V,a
function ®: V — R will be called quadratic if for a basis Xi, ..., X» of V we

have
n n
@(ZsiX,-) = Z <I>jksjsk
i=1 k=1
for certain numbers @i, which it will be convenient to assume are symmetric
with respect to the indices j and k. It 1s easy to see that if & has this form

for one basis, then it has this form for any other basis. Indeed, if Xy, Xnis
another basis, with X 3", aij Xi, then

o(3m) = o £ towss) = (L))

i=1 p=1
= 30 o (3 ) (L)
jok=1 i=1 i=1
n n n
=2 (Z d’jk“ia“kﬂ)sasﬂ = D Bopss’,
o, B=1 “jk=1 o, B=1

where the @44 are given by

(3) Dop = ®jrdjadip.
j.k=1

Naturally, (3) is just the n-dimensional analogue of the equations (1) which gave
us a well-defined @ in the first place. Notice that in terms of the matrix A =
(a;jj) and the matrices [®] = (Pjx) and [<D] (<Daﬂ) we can write (3) as

S [P] = 4" [9]- 4
We will define a function ¥: V — R to be cubic if for a basis Xi,.... Xn

of V we have .
\I’(ZSiXi) Z \I’kls’ k I
i=1

j.kJA=1
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for certain numbers Wiy, which we can assume are symmetric in the indices.
For the basis X we easily find that

n n
\IJ(Z.vi/\—’i)z Z @aﬂys“sﬂs”,
i=1 o, B,y=1
where
n
() Vopy = ) Wikitjatkpaly;

J.k,0=1

this equation, of course, is just the analogue of (2). It is not hard to see that
we could also define a quadratic function ®: V — R to be one of the form
&(X) = B(X, X) for a symmetric bilinear function B: V x ¥V — R. Similarly,
a cubic function ¥: V — R is one of the form ¥(X) = T(X, X, X) for a
symmetric trilinear function 7: V x V. x V — R.

Now we would like to find some quantity depending on ® and ¥, but not on
the choice of basis, and hence not on the particular coefficients ®;; and W, tor
this basis. As a warm-up, let’s first take the case of two quadratic forms ® and ©.
We will assume that the first quadratic form & is non-degenerate, by which we
mean that the corresponding symmetric bilinear form is non-degenerate. More
concretely, this means that if we choose a basis Xy, ..., X, for V, then the matrix
[®] = (®jx) is non-singular, and therefore has an inverse matrix [®]7! = (®7k)

with
n
Kl _ sl
Y oot =4
k=1

Now consider the number

zn: k.

j.k=1

If /\7j = Y, aijX;i 1s a new basis, and B = (b;;) is the inverse of A4 = (ajj).
then (4) shows that the matrix [®] = (Pyp) satisfies

[®] = A [P]A = [®]"! = B[®]'B"

and hence

n
6) dob — Z (Djkbajbﬂk.
j.k=1
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Applying (3) to ©, we thus find that

n

n n n
Z (T)aﬂ(:)aﬂ = Z Z (Djkbajbﬂk Z Omdiatmg

a, B=1 o, B=1j,k=1 I,m=1
n n
ik
= Z Z o/ ®lm5lj5mk
jk=11,m=1
n
= > oo,
J.k=1

We thus have a well-defined number (&, ®), which for any basis {X;} is given
by
n
(©.0)= Y d* 0.
j k=1

Naturally, there must also be some invariant definition of (®, ®) lurking around.
Indeed, the bilinear function corresponding to & is just what we usually call an
inner product { , ) on V. This gives rise to mnner products on just about every
other vector space in sight which is related to V. In particular, we could define
an inner product { , ) on the set of all bilinear functions C: V x V — R; the
quadratic function © corresponds to such a C, and (®,®) is just {(C,C). But
in this case I don't think it’s worth all the linear algebra which this involves; it’s
easier to just do the calculation.

To get a little more feeling for what the number (®,®) is, take the case
where the inner product corresponding to ® is actually positive definite. Then
there is a basis Xi,..., X, of V such that &;; = §;; and also ®;; = 0 for
i # j (compare Proposition II.4-14). So (®, ®) is just the sum of the “diagonal
terms”, ($,0) = ), 0;;. When ($,0) = 0, the forms ® and ® are said to
be apolar, a term that comes from the old invariant theory. We can give a very
concrete geometric meaning to apolarity when V is 2-dimensional. For our
special choice of basis, we see that © is apolar to @ if and only if the graph of
©: V — R is a hyperbolic paraboloid,

O(sX1 +1X2) = Opys® + Opt?
= @11.5‘2 — (")11[2,
for which the set @~1(0) C V is a pair of straight lines making angles of 7/4

with the lines spanned by X; and X, (we measure angles in V by using the
inmer product on V corresponding to @, so that X7 and X» are orthonormal).
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We can also express the apolarity of ® and © in a way that does not involve the
special choice of basis: ® and © are apolar if and only if ©~(0) is the union
of two straight lines which are perpendicular to each other in the inner product
on V corresponding to &.

Now consider a quadratic function ®, which we will stll assume is non-
degenerate, and a cubic function . Instead of constructing a number from ¢
and ¥, we will construct an element of V*, namely

n
Xi (o Z q)jk\pijk.
J k=1

Suppose we have a new basis X; = Y, a;; X;, and that we let B = (b;j) be the
inverse matrix of 4 = (a;;), as before. Consider the map

n
X, — Z 5ﬂy@aﬂy.
B.y=1

This map takes X; =3, bai Xo O

h h n h n h
N bai Y O Wup, = bai Y Y WEbgibyr Y Wipgaraappagy
a=l B,y=1 a=l B,y=1j,k=1 1,p,q=1
by (5) and (6)
h
= Z d)jk\l’ijk.
Jok=1

Thus we have a well-defined map (®, ¥): ¥V — R, which for any basis {X;} is
given by

n
jk
(@, 9)(X) = D KU
j k=1
industrious readers can supply their own invariant definition. As before, we say

that ® and W are apolar if (®,¥) = 0. Suppose that V is 2-dimensional, with
a basis X7, X>. Since

ol @lzy $r  —Dyy )

o 92 ) det[®] \ -P1p Dy /]
and the ®j; and Wi are symmetric in the indices, we see that & and W are
apolar if and only if they satisfy the apolarity conditions

() P Wy = 2PV 1 + P22 =0
DooWi12 — 2P 12 Wi + P Wo = 0.
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Later on we will give a geometric interpretation of apolarity when V' is 2-dimen-
sional, but for the moment, we content ourselves with the observation that
apolarity is clearly just about the simplest well-defined relationship that one can
posit between a quadratic and a cubic function. It also happens to do the trick:

12. PROPOSITION. Let M be a surface in R? and p € M a point which is
elliptic or hyperbolic. For each tangent vector X3 € R*, which is not in M,
define a quadratic function ®: M, — R and a cubic function ¥: M, — R by
looking at the second and third order terms in the Taylor series for the function
which describes M in terms of the X1, X5, X3 coordinate system, for any basis
X1, X2 of M,. Then there is a unique direction for X3 which makes ® and W
apolar.

PROOF. For simplicity we will assume that p = 0 € R? and that M, is the
(x, y)-plane. We can choose a basis X1, X; for R2 so that if

M M = {sXi + X2+ h(s,1) - (0,0, 1)},
then A has the form

A 1
Q) h(s,t) = E(SZ + %) + g(Bs3 +3Cs%t +3Dst> + Ef®) + R(s,1),

where R(s,t)/|(s,1)]> — 0 as (s,¢) — 0.

Now consider the basis X1, X2, X3 = (0,0, 1) 4+ A X7 + u X>, for two constants
A, . Let k be the function describing M in the Xi, X», X3 coordinate system,
so that

(3) M = {sXi +tX2 +k(s,0) - [(0,0,1) + A Xy + p Xz]}
={[s+ A k(01X + [t 4+ p - k(s.0) X2+ k(s,0)- (0,0, 1)}.

Comparing with (1), we see that
k(s,ty =h(s+A-k(s,t), t +p-k(s,t)).
Using (2). and noting that we have k(s,1)/[(s, )| = 0. we find that

A 1
k(s.t) = T(SZ +2) + 8(Bs3 +3Cs%t + 3Dst? + Et?)

+ Ak (s, ) (A -s £ - 1) + R'(s,1).
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where R'(s,1)/|(s, 1)1 = 0 as (s,1) — 0. If we plug the whole right side of this
equation into the term k(s,7) on the right, we then find that

A 1
k(s t)y= 7(.92 +15)+ 6(353 +3Cs%t +3Dst? + Et3)
1
+ 5(32 +2)h-stp-1)+ R(s, 1),

where R”(s,1)/|(s,t)]> = 0. Therefore the ® and ¥ for the basis X1, X2, X3
are given by

A 2 2
DXy +1Xr) = E(S + %)
1
W(sXi +1X) = ([B+ 3A)s® + 3[C & u)s2r + 3[D £ Alst? + [E +3p)1%).

The apolarity conditions (x) for this ® and ¥ are

+(B+30M)+(D+A)=0
+(C £ u) + (E +3u) =0.

There are clearly unique A and p for which these equations hold. Itis also clear
that if the apolarity conditions hold for some X3, then they also hold for any
multiple of Xj3. So there is a unique direction for X3 which will make ® and ¥
apolar. <

For an elliptic or hyperbolic point p € M, the unique direction through p
which is given by Proposition 12 is called the affine normal direction at p. Itis
clearly a general affine invariant: If 4: R* — R3 is any affine map, then the
affine normal direction through the point A(p) € A(M) is the image under A4
of the affine normal direction through p € M.

The affine normal direction can also be characterized in terms of moving
frames. For simplicity we fust assume that p = 0 € R? and that M, =
(x, y)-plane. If the vector v points along the affine normal direction through p.
then M is the graph, in the (1,0, 0), (0, 1,0), v coordinate system, of a function h
satisfving the apolarity conditions (x):

0
0 = haohy = 20 + il = a— dt‘thij
g at (0,0).

ad
0 = hahyi2 — 202l + oo = 5 d(’th,'j
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We can write these two equations together simply as
) 0=ddet(hj)  at(0,0).
Locally M is the image of the map f: R? — R? defined by
J(s,0) = (5,4,0) + h(s, 1) - v.
First take the particularly simple moving frame
X, = fi =(1,0,00+ v, Xo=fo=(0,1,00+/mv, Xi=v

and let lzg be the corresponding connection forms. Then

3
o o o

0y + 0%y +haXa =V, X =Y ye(X)-Xa  ik=122
XI\' |
o=

i

3
0=V X3=) V(X)) Xa k=12,
a=1

which implies, among other things, that

W =0 onTM i,j=1,2
(2) o
¥y =0 on TM a=1273

Now consider an arbitrary adapted moving frame Xj, X, X3 subject only to
the condition that .
X3 = X 3 at p.

This condition implies that the matrix ¢ on page 80 relating the two frames
also satisfies
5 ai(p) =0 i=12% az(p) =1

= @ alp=0  i=123 (@ up) =1
From the general equation (d) on page 81 we have

lﬂl-j =(a"! da){ + (a_IIZa){

3 3
=Y @ Vjadagi + Y @ jeVfag i, j=1.2
a=1 o, B=1
w; = (@ "da)} + (aﬂllﬁa)g
3 3 .
= Z(a_’)Ba dags + Z (a—l)aalﬁgaﬂa.
a=1

o, B=1
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Taking into account equations (2) and (3), as well as equation (b) on page 80,
we obtain

(4) w; = daxz; on TM, at p
and

2
v = Z(a—‘),-k day; onTM, at p  i,j=1,2
k=1

since our matrix ¢ has the form

ayp a0
a1 dyp O at p,
0 0 1

we can write the latter equation as
. 2
(5) ¥/ = (AjxdA  onTM,atp i, j=1.2,
k=1

dip di2
dazy da
of the matrix S for the moving frame Xj, X3, X3. For equation (e) on page 81

relates S to S = (hij) by

where A4 is the 2 x 2 matrix 4 = ( ) . But we can compute dass3 in terms

a33-S = A'SA = (a33)? - (det ) = (det A)? - (det S)
— 2log |azs| + log |det S| = 2log |det A| + log |det S].
Since a33(p) = 1, at p we have
2dass + dlog |det S| = 2d log |det A| + d log |det S|
= 2d log |det A|, by ().

Hence (4) becomes

1
(6) ¥3 = dlog |det 4| — 5d log |det S| on TM, at p.

Now note that

A {(A11 A2 — Ap A
dlogldetA|=dd(:tA _ 4dn b 2)
_ (Ayp dAy — AjadAy) +(—Ay dAa + A dAr2)

det A
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azn —d2
—d3i at

det A ’

Sice

A7 =

tlns becomes

2 2
dlog|det A| = Y (A7 )y dAgy + Y (A7 )k dAgs
k=1 k=1

=yl +y2 onTM,atp  by(5)

Substituting nto (6) we see that

An adapted moving frame X1, X2, X3 on M C R3 has X3(p) pointing in the
affine normal direction at p if and only if

lp;’ = ‘//11 + wzz - —;—dlog |det S| on TM, at p.

From this fact we see, what is by no means a priori clear, that the condition
v =yl +yi-— %d log |det S| on TM at p depends only on the direction of X3
at p. It is also possible to check this by a direct, quite unpleasant, calculation.
If we had somehow independently observed this fact, we could have used this
equation to define the affine normal direction. Of course, it is hard to see how
one would ever be led to such an “observation”, but there is at least a way to
simplify the equation. We have already observed that the condition

S(P)Z(é?) or ((1)_01> or {ggiiez

depends only on the value of the moving frame Xi, X3, X3 at p, so it is reason-
able to restrict our attention to frames satisfying this condition at all pomnts. It
15 clear that

An adapted moving frame Xi. X2, X3 on M C R with S = ((1) ?) or

((1) _01 ) everywhere. has X3(p) pointing in the affine normal divection at p if
and only if

Vi=vi+y; o TM.atp.

The direct verification that for such frames the condition 3 = ¥} +¥3 on TM
at p depends only on the direction of X3 at p is a litde easier, and gives a nice
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criterion for the direction of the affine normal; of course, as a definition it still
leaves a lot to be desired in terms of motivation.

Now that we have picked out an affine normal direction which is a general
affine invariant, it is a simple matter to define a special affine normal vector
which is a special affine invariant. We define the special affine normal v, of M
at p to be the unique vector v, € R?, such that

(1) v, pomts along the affine normal direction at p

(2) det(Xy, X2,v,) = 1 for every positively oriented basis X1, X, of M,
which is orthonormal for the metric { , },.

If f: M- R? is an immersion, we let .V be the vector field along f such that
N(P)f(p) € R3f(p) 18 the special affine normal to f(M) at f(p). We will not
try to derive a formula for N right away, since it will come out very naturally
later on.
Suppose now that we have an adapted moving frame X1, X2, X3 on M such
that det(Xy, X2, X3) = 1. Then for all tangent vectors X to M we have
0 = X(det(X1, X2, X3))

= dct(V’XXl, Xa, X3) + det( X7, 'y X3, X3) + det( X, Xz,V/Xxﬂ

3
= det(z YE(X) - Xa,Xz,Xg) + -

o=l
= Y1 (X) + 93 (X) + 3 (X).
Thus we have
Yl +yi+yi=0  onTM.
Suppose, moreover, that (X;, X2) is positively oriented and orthonormal with

respect to the metric { , } on M; in other words, suppose that S = ((l) (l)) or

((l) _01) everywhere. We have seen that in this case X3(p) points in the affine

normal direction if and only if
vl =yl +y? on TM, at p.
Since we also have y| + 2 + w; = 0 everywhere on TM | we find that
An adapted moving frame Xy, X2, X3 on M C R? with (X1, Xa) positively

ontented, det(X1, X2, X3) = 1. and S = ((l) (l)) or ((l) 21 ) everyuhere, has
X3(p) =vp if and only if

¥3 =0 on TM, at p.
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Now the condition lﬂg([)) = 0 on M) means that
V'x, X3 € M, for all X, € Mp.
So we see, in particular, that we always have
Vix,ve M, for X, € Mp,

just as we always have V'x,v € M, in ordinary surface theory. (Verifying this
fact directly from the definition of v involves a rather hideous computation,
and in general all the formulas and computations for affine surface theory are
considerably more complicated than those in ordinary surface theory; that is
why we have brought in moving frames, with their attendant computational
simplifications, so early in the game.) We will denote the map X, = Viy, v
from M, to M, by dv: M, — M,. The reason for this notation is the same as
in ordinary surface theory: since we have a vector vp € R3, for each p € M, we
have a map v: M — R* and V'y,v is the same as [dv(Xp)]p. In the present
case, the map v doesn’t go into any special subset of R3, but v(M) C R? will be
some surface, at least near the points where dv: M, — M, is non-singular. The
relation V'y, v € M, tells us that the tangent plane M, is parallel to the tangent
plane v(M)y(p). So we could also denote dv: M, — Mp by vi: Mp — M),
as in the case of ordinary surface theory.

Before proceeding with the development of special affine surface theory, we
pause briefly to describe the procedure usually found in those papers and books
which present the theory totally from the moving frame point of view, and
ignore the question of general affine invariants, like the affine normal direc-
tion. One works, first of all, only with adapted frames Xi, X2, X3 satisfying
det(X1, X2, X3) = 1, and hence lﬂll + lﬁzz + 1ﬁ33 = 0 on TM. Equation (e) is first
derived, except that now a33 must = 1; it shows that S is determined only up
to a transformation S > A'SA. The canonical forms for symmetric matrices

under this equivalence relation are precisely ((l) (l)) and ( (l) —Ol ) ; s0 one “nor-

malizes” the frame by requiring that S be everywhere of this form. Then one
further normalizes the frame by requiring that ¥3(p) = 0 for all p, noting that
the condition lﬂ;([)) = 0 now uniquely determines X3(p); indeed if {X,} and
{X'y} are two adapted frames with det(X7, X2, X3) = det(X'1, X2, X'3) = 1
and S = ((l) (l)) or ((l) —Ol) everywhere, so that

i =0

y3 =67,
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then the matrix «¢ relating the X/, to the X, must be of the form
g o

an di2 dis
a=|\|dxn dx dz3
0 0 1

and equation (d) on page 81 yields

¥’ = ylans + Yian + v
:a1301 ia2302 +1ﬂ§,

so that ¥3(p) = ¥'3(p) =0 = ais(p) =ax(p) =0 = X'3(p) = X3(p).
The uniquely determined X3 is now dubbed the special affine normal, and any

basis X1, X» with § = <(1) (1)) or <(1) _01 ) is called orthonormal, thereby defining

the special affine first fundamental form. These normalizations are usually
carried out with hardly a word of motivation, as if they are so natural that any
idiot would immediately think of doing them—in reality, of course, the authors
already knew what results they wanted, since they were simply reformulating a
classical theory.

Now that we have finally determined the special affine normal v, at p € M,
we can imitate a basic construction from ordinary surface theory. First we
introduce the unique projections

TR, - M,

L: R}, - R-v, = all multiples of vy

such that
X=TX+.1X forall X € M,.

Notice that T: R*, - M, is generally different from the tangential projection
T: R’ — M of ordinary surface theory. Given vector fields X,Y tangent
along M, we would like to find TV’yY and LV'yY, where V'xY is the ordi-
nary covariant differentiation in R?. Now in ordinary surface theory, LV'yY
nvolved the second fundamental form II. Since II is so closely related to the
affine first fundamental form 1, we might expect I to be involved in LV'yY.

As a matter of fact,

13. PROPOSITION. If X.Y are tangent along M C R3, then

AVxY =X, Y} v =1(X,Y) - v
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PROOF. Note first that, as in the case of LV'x Y, we have
AV, fY = LXp(f)- Y, + f(p)- V'x,Y)= f(p): AViy, Y,

so LV’y, Y actually depends only on the value of Y at p. Now let (X7, X3)
be a positively oriented moving frame on M which is orthonormal for { . b:
this means (taking the elliptic case for simplicity) that for the moving frame
(X1, X2, X3) = (X1, X2, v) we have

vl =6 on TM.

1

But then

AV Xi =¥ (X) v =01(X) - v = (X, Xi} -v. &%

Now let’s consider TV’y Y. In ordinary surface theory this is Vx Y, where V is
the connection on M determined by the metric i*( , ). In affine surface theory,
we can consider the comection Y on M determined by the metric { , } (this
exists even if { , % is not positive definite; compare pg. 11.342). Now one can
ask whether TV/xY = Vx Y for vector fields X and Y tangent along M. This
simply isn't true, and we therefore define a map 4: M, x M, — M, by

TV'x,Y = Vx,Y + 4(Xp. Yp),

where Y 1s a vector field tangent along M which extends Y,. The notation
$(Xp, Yp) 1s justified, since
TV%, Y = Vx, ['Y =T(Xp(f) - Yp + f(p)- x,Y)
—[Xp(f)-Yp+ f(p)- Vx, Y]
= f(p)- [TV’XI,Y — VX,,Y]-

14. PROPOSITION. The tensor 4 is symmetric.

PROOF. If X and Y are extensions of X,.Y, € M, to vector fields which are
tangent to M at all points of M. then

$(Xp. Yp) — s(Yp. Xp) = T(V/X,,Y — V,Y,,X) — (VX,,Y — VyI,X)
=[X.YI(p) = [X.Y(p)=0. &
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We can now write the decomposition
V,Xy =TVyY + J.V,Xy

in the following form:

The Special Affine Gauss Formulas:

xY = VxY +5(X,Y) +{X, Y}y
for vector fields X, Y tangent along M.

In ordinary surface theory we often found that the second fundamental form
II(X,Y) = (s(X,Y),v) was easier to work with than the map s: M, x M, —
Mt itself. Since ¢ now goes into M,, we have to adopt a slightly different
strategy. We define the special affine second fundamental form I of M (o be
the tri-linear map

I(X,Y,Z)y=1{s(X,Y), Z5.

Naturally, when f: M — R® is an immersion, we define the special affine
second fundamental form 1y of f to be f*I, where I is the special affine
second fundamental form of f(M). For f: U — R? (with U C R? open), we
write the form X[, as

2
]If: Z [,-jkdsi@)dsj@)dsk.
i,j. k=1

Since the components of Iy have three indices, there is no possibility of con-
fusing the £;; with the /;; (if things hadn’t worked out like this, I think I would
have committed suicide at this point). We also write

2
s(fis i) =)t i,
k=1
so that

2
Ll = U ), fich = (Z & Sy fk>
p=1

2
=3 sty
p=1
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equivalently,
2
k k
t=2_4" tiip
p=1

Suppose that (X7, X2) is a positively oriented moving frame on M which 1s
orthonormal for { , }, and let X3 = v. For the moment consider the case where
all points of M are elliptic. We set

cijie = L(XG, Xj, X)) = {8 (X5, Xj), Xt
so that we have
2
s(X,Y) =) b (X)07(Y) - Xy
k=1
Cijk = Cjik-

We also let wij be the connection forms for the frame X;, X> which are deter-
mined by the metric { , }; thus wi’ are the unique 1-forms on M satisfying

2
Ao’ == i A6/
j=1
w; = —w; .
Since
TVxX; = Yx Xi + 4(X;, X),
we have ,
vEX) = o (X + et (X)
j=1
and hence
2 .
(1 vk =of +) apb’.
j=1
Since a)ik = —w,’;, we obtain
2
(2) vyl =) (i + b’

j=I1

(As usual, these formulas are understood as formulas on 7M). From this we
immediately deduce
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15. PROPOSITION. The tensor 4 satisfies the “apolarity condition”
trace(X — $(X,Y)) =0.

In terms of a map f: U — R* we have

2 2
0= ¢* i =) 9" tju;
e

ik=1 ik=1

in other words, the quadratic form determined by { , }, is apolar to the cubic
form determined by IL(p).

PROOF. For our moving frame (X|, X5, X3) we have lﬁll + lﬁzz + lﬂg = 0, and
also 3 =0, so ¥} + 2 = 0. Using equation (2), this gives

2
=) {8(Xi, X)), X
i=1

= trace(X — 4(X, X)).

Similar, but slightly more involved, computations give the same result in the
hyperbolic case. The second part of the Proposition is merely a restatement of
the first, as we easily compute by using Fact 0. «

By bringing in the structural equations, we obtain one other important piece
of information.

16. PROPOSITION. The tensor I is symmetric in all three arguments; equiv-
alently,
{3(X,Y), Zy =44(X,Z),Y}.

In terms of a map f: U — R* we have
Lijke = Likj-

PROOF. Again we consider only the elliptic case, and leave the hyperbolic case
to the reader. From equation (2) on page 106 we obtain

2

2 2
(1) DR AN AR I A S S A LN
k=1 k=1

jk=1
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2
2) Y i A 6K = —db’

k=1

by the first structural equation. But we also have ¥} =67, so we also get
2
(3) A" =dy} ==Y YRyt (since 3 =0)
k=1

2 2
:_Zek APk :Z\//,."/\Gk.

k=1 k=1

From (1), (2), (3) we have
2 .

0= (cijk +cxji)0 A 0%,
Jj,k=1
so for each i, j, k we have

0 = Cijic + Ckji — Cikj — Cjki
= Cijk — Cikj-
From the apolarity conditions we can now easily obtain an explicit formula
for the vector field & along a map f: U — R*. We write the special affine

Gauss formulas as

Jij=Ye fi+a(fii fi) +4ij N

2 2
=Y Thfe+ Dt i+ gi N,
k=1

k=1

where the Y{-‘j are the Christoffel svmbols for the metric ¢ . }. and hence com-
putable in terms of the ¢;;. Now

2
Z g =2.

ij=1
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so we have

N =

N —
-

L]

o (£ ZF fk—Zf )
1 2
=5 g”(/}j—z fk)—— Z Z 97 4" b

i,j=I I, j=1k,p=1
| 2 2
ii . k .
=3 %f”(/ij - Zrijfk)a
ij=1 k=1

using Proposition 15 and the fact that £, = £,;;, by Proposition 16. This
equation means that each component N of A is given by

2 2
1 ..
) M= Y (f“,-,- - Zr,’-‘,f“k) =125
i,j=I k=1

Nouce that the partial derivatives f%; are the components of the vector field
df* on U. So the tensor Y(df®) of type (3) has components (pg. 11.210)

2
: k
S = - Zrijfak
k=i

[In Chapter | we wrote f;; instead of f; for df/dx’, but when we are dealing
with the standard coordinate system on R? we will revert to the standard sub-
script notation for partial derivatives; we use ; rather than ; to emphasize that
we are using the covariant derivative V.] We can therefore also write

2
1 -
) N =23 g oy

ij=I1

Our formula is rather complicated, but it mvolves only quantities computable
n terms of the ¢;;’s, and hence ultimately in terms of f: m Addendum | to
Chapter 7 we will have a little more to say about it.

With our present proof of Proposition 15, the fact that our fundamental forms
I, T satisfv the same apolarity conditions which we used to define T works out
as some sort of miracle. So it will perhaps be reassuring to see this fact demon-
strated by a computation, which will also be useful later. We will assume that
p =0 € R the tangent plane M), is the (x. y)-plane. and the z-axis is the affine
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normal direction at p. 'Then M is the image of an immersion f(s, ) = (5,1, h(s,t))
with /1(0,0) = /1(0,0) = /15(0,0) = 0, and / satisfies the apolarity conditions

(l) 0=d(d€t/’l,‘j) at (0, 0).
Now V'f. f; = (0,0, h;;), and the tangential projection T at 0 is just the ordinary

projection on the (x, y)-plane, so TV's, f; =0 at p. Consequently, s(f;, fj) =
—Vy, f; at (0,0), which gives

@ bije = 88 Ufis Ji)s St = =37 1 i at (0,0)
2 2
Z_Zr5<fb’fk>=—zgpkl“,’-’j at (0,0)
p=1 p=1
= L.kl at (0,0)

where [i/, k1 are Christoffel symbols for Ir. To compute them, we note that

dgi;; 0 _
aikj = g ldy - (det(dyj) ™ at (0,0)
= (det(d,-j))_l/“% at (0,0) by (1)
3 o
= (det(d.-,-))—‘/“as—k det( f1, /3, fij) at (0,0)

= (det(dij))""4[det( fik, fo, fij) + det(fi, fox, fij)
+ det( f1, f2, fijx)] at (0,0)

= (det(d;j(0,0)))*[0 4 0 4 A1 (0,0)],

since each f;; has its first 2 components equal 0 at (0,0). Thus
- 1 (34 | 09k dyij
lij, k1(0,0) = 3 ( 3] + asi T 9k (0,0)

g+ hjri = hiji)

2. ¥ det(d,j)

(0,0),

and (2} becomes

1% (0,0)

3 [’.. 0’0) = — -
( ) jk( 2. % det(d[j(O, 0))
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This demonstrates Propositions 15 and 16 (since we can always make the z-axis
the direction of the affine normal direction by a suitable special affine linear
map, and the assertions in question are invariant under such maps).

In ordinary surface theory we used I(p) and II(p) to define two numeri-
cal invariants, the principal curvatures ki(p),k2(p) [or equivalently K(p) and
H(p)]. These mvariants arise quite naturally from an algebraic point of view,
as the invariants of a 2 x 2 symmetric matrix S under the map S +— A7154,
for 2 x 2 orthogonal matrices A. Geometrically, these invariants arise when
we describe the osculating paraboloid of M (using the ordinary normal v, as
the third axis)—for p € M C R and p’ € M’ C R? we have {k;(p),k2(p)} =
{k1(p’), ka(p')} if and only if there is a special orthogonal affine map A4: R? — R3
which takes the osculating paraboloid P at p onto the osculating paraboloid P’
at p’. In special affine surface theory we now want to use I(p) and I(p) to
determine numerical invariants. Algebraically, we are asking for invariants of a
cubic form ¥ under the map ¥ > ¥, where

2

aby = D Vikidjaargary
J.k, =1

&l

for 2 x 2 matrices A which preserve a certain quadratic form ®. In the olden
days when mighty invariant theory held sway over most of the domains of math-
ematics, this question was as natural to consider as the first, and one could
probably preface the answer with the standard refrain “As every undergraduate
knows ... 7. Nowadays, of course, not even graduate students know, or care,
what the invariants for cubic forms are. Instead of describing them algebraically,
we pass immediately to the (equivalent) geometric problem. For each p € M
we have the function ® + ¥: M, — R obtained by looking at the second and
third order terms in the Taylor series for the function which describes M in the
X1, X2, vp coordinate system, for any basis Xj, X2 of M, (which one doesn’t
matter). We will call the graph S of ® + W in the X, X3, v, coordinate system
the osculating cubic at p, and we want to classify these osculating cubics up to
special linear affine maps.

17. PROPOSITION. Let S be the osculating cubic at a point p of a surface
M c R} If pis an elliptic point, then there is a special linear affine map
A: R* - R? such that A(S) € R? is the graph (in the ordinary coordinate
system for R3) of the function

1
(a) (s,1) — 5(52 +1%) + %(s3 — 3st%), for some C.
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It p is a hyperbolic point, then we can choose A so that A(S) is the graph
of one of the three functions

1 C
(bl (s,0) > =(s% — 12+ —(s3 + 3s1%)
2 6
1 2 2 C 3 2
(b2) (5,1) — E(S —1 )+€(t + 3ts°)
(c) (s, 1) — 1(s2—12)+1(s+1)3'
9 2 6 bl

we can also choose A so that A(S) is the graph of one of the two functions

D

(b (5,1) —> st+€(s3+13)
I3

(c (s,1) > S[+6S .

Remark: Changing from (bl) to (b2) involves interchanging the first two axes
of R? while leaving the third axis fixed, so we need both forms unless we allow
maps 4: R* - R® of the form A = T o B with T a translation and det B = +1.
Alternatively, we can make do with only one of these forms if we allow ourselves
to change the orientation of M, and hence the direction of v,.

PROOF. We might as well assume that p = 0 € R?, the tangent plane M, is
the (x, y)-plane, the affine normal v, is (0,0, 1), and the vectors (1,0) and (0,1)
are an orthonormal basis of Mp; for it is clear that the image of M under a
suitable special linear affine map will have this property. Then M is the image
of an immersion f(s,t) = (s,1,h(s, 1)) with /(0,0) = /1(0,0) = /15(0,0) = 0:
since the z-axis is the affine normal direction, the apolarity conditions become

(%)

hashiyg =2l + il =0
at (0,0).

haaly — 2yl + hihia =0

Suppose that p is an elliptic point. The fact that v, = (0,0. 1) and the basis
(1,0.,0), (0, 1,0) is orthonormal, means that /2;;(0.0) = §;;. So () becomes

i+l =0 and N2 4 22 =0 at (0.0),

and S is the graph of a function of the form

1 1
(s.1) —> ;(52 +15) + g(as3 + 3bst — 3ust® — btd).
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Now suppose we apply one more special linear (in fact, special orthogonal)
transformation
iy (0.7,2) > (0 cos® — tsinf, osinf + 1 cosb, ).
The image of S under this map is the graph of

(s.1) H%([S cosf — tsin0) + [ssin @ + 1 cos0]?)

+ é(a[scos@ —t sin9]3 +--),

which works out to be

’ 1 1
(2) (s.t) — E(SZ +1%) + g(a*s3 1+ 3b*5%1 = 3a*st> — b*t),

) {a* =ucos}® +3bcos?Hsinf — 3acosOsin’ O — bsin’ O

b* = bcos® 0 — 3acos?0sinf — 3b cosO sin® O +asin® 6.

To obtain the desired form (a), we just have to choose 6 so that b* = 0, which
can be done by choosing 6 so that cot8 is a solution of the equation

b(cot0)® — 3a(cot9)> — 3b(cot9) +a = 0.

Now suppose that p is a hyperbolic pomt. Then /11(0,0) = —/2,(0,0) =1
and £4,(0,0) = 0. So (%) becomes

hi2a = iy and hazo = hyp at (0,0),

and S is the graph of a function of the form
1 1
4) (5,1) —> ;(sz — )+ g(as3 + 3bs2t + 3ast® + bt?).

We might as well assume that ¢. b # 0. for otherwise se already have the form
(bl) or (b2). We apply one more special limear transformation

) (0.1.2) = (0 coshu + tsmhw, osinhu + tcoshu, o).

The image of S under this map works out to be the graph of

1 1
(s.1) — ;(sz -+ 6((1*;93 +3b*s2t + 3a*stt + b,
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where
6) a* = acosh® u + 3b cosh? u sinh u + 3a cosh u sinh? & + b sinh® u
b* = b cosh® u + 3a cosh? u sinh u + 3b cosh u sinh? u + a sinh® u.

To obtain the form (bl), we have to find u so that v = cothu = (cosh u)/(sinh )
satisfies the equation

(7) bv® 4 3av® + 3bv +a =0,
Now coth does not take on all values, for the odd function

cosh u et e H |

cothu = — = =—
sinh u et —eH et — |

is clearly > 1 for ¥ > 0, and hence < —1 for # < 0. It is easy to see that
coth actually takes on all values except those in [—1,1]. So we can obtain the

form (bl) if equation (7) has a real root which is not in [—1, 1]. This certainly
happens if the values of hv3 + 3av? + 3bv + a are either both positive or both
negative at v = 1 and v = —1. So we can obtain (bl) if

(8) 4a +4b and 4a — 4b are both > 0 or both < 0.

But similarly, we can obtain (b2) if the values of av? + 3bv? 4 3av + b are both
positive or both negative at v =1 and v = —1, 1.e, if

9 4a +4b and 4b —4a are both > 0 or both < 0.

Clearly. either (8) or (9) must hold if @ # +b. Thus (bl) or (b2) can be obtained
when ¢ # +b. We note right away that (b') is obtained from (bl) by considering
the special linear transformation

(10 (0,7,2) = (U+T _(U_T), Z),

V22



Elements of the Theory of Surfaces in R? 115

the constant D being ~CV2. Similarly, (b’) is obtained from (b2) by considering
the special linear transformation

o—171 O0+T1
11 , T, 2 T = s 2 3
it (052 = ( NI )

the constant D being +C /2.
When we have ¢ = £b, then our original function (4) 1s

(s,0) — %(s2 -3+ %(s +1)3.

The transformation (11) or (10) will change this to

a/
(s,t) — st + €s3.

If @’ =0, this is a special case of (b’). Otherwise, we can make ¢’ = I, and
thus achieve (¢'), by a transformation which changes s to s/ Va' and 1 to Va't.
Since we can achieve (¢/), we can now achieve (c) by using the inverse of the
transformation (11). «»

Notice that in case (a), the cubic part of S is just (a multiple of) the monkey
saddle. Implicit in the previous Proposition is a geometric interpretation of
apolarity when ®: V — R corresponds to a positive definite inner product on
a 2-dimensional vector space V. The cubic form ¥: V — R is apolar to ®
when the set U~'(0) consists of three lines that make angles of 7/3 with each
other (in the inner product on V corresponding to ®). It 1s clear that if we
apply a rotation around the z-axis through an angle of /3 or 27/3, then A(S)
will go into itself, so in case (a) the affine linear map A is not unique. We can
also change C to —C in (a) by rotation through an angle of &, which changes s
to —s and f to —¢; the same change occurs 1f we rotate through an angle of
T +m/3orw+2n/3. If C =0, then we can apply any rotation around the
z-axis. However, from equations (3) it is easy to see that this is the only extent
to which 4 and C are not unique.

In the hyperbolic case, if we can obtain (bl) or (b2) with one constant C # 0,
then we can also achieve this form with —C by applying the rotation (o, 7,2)
(=0, —1,2). On the other hand, it is easy to see that this is the only other
constant we can obtain, and that there is precisely one A which will make A(S)
have each of these forms. When C = 0, then we can always compose A with
any transformation of the form

(0,7,2) > (X[o coshu + 7 sinh u], £[o sinh « + 7 cosh «], 2).
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Bearing these remarks in mind, we see that Proposition 17 allows us to define
a single new mvariant: If p is a point of M for which the osculating cubic S
has the form (a), (bl), or (b2) for some number C (unique up to sign), we define
the Pick invariant J at p by

J=—
2
if the osculating cubic has the form (c), we define J to be 0.

It would be nice to have a straightforward invariant description of J in terms
of the forms I, I, and it can be obtained as follows. Given an inner product
( , ) onavector space V, we can use it to define an inner product { , ) on the
vector space of all trilinear maps a: V x V x V — R. Instead of describing
this completely invariantly, let us consider a basis vy, ..., v, of V and let y;; =
(vi,vj). The matrix (y;;) 1s non-singular, and has an inverse matrix (yij).
Given two trilinear maps o, 8. V x V x V — R, let ajj; = a(v;,v;, vg) and
ﬂijk = B(v;, Vi, V). Then

n n
(asﬂ): Z Z aijkﬂparyipyjaykr~

i,j,k=1 p,o,1=1

If v1,..., v, 1s orthonormal with respect to { , }, then we have simply

n

(@.8) = Z ok Bijk -

i,jk=1

The reader may easily check that this definition does not depend on the choice
of basis, or else fashion an mvariant definicion.

18. PROPOSITION. For a point p of a surface M C R3, the Pick invari-
ant J(p) is

1
J(p) = Z{W(p). T(p},.

2

where { .}, is the inner product on all trilincar maps on M, determimed by
the inner product { . }, on M.
If /:U — R?is an immersion. then

J =

2 2
Z Z [ijk[pargipgjagkr~

i.j.k=1 p.o.t=l

19 |
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PROOF. It suffices to consider the case where M = {(s, 1, (s, 1))}, the point p is
0 € R?, and the osculating cubic S has one of the forms (a)—(c) in Proposition 17.
In case {(a) we thus have

h(0,0) = 5;(0,0) = 0,
hij(0,0) = §;;
h111(0,0) = C
11211(0,0) = hy21(0,0) = 1112(0,0) = —C, all other £;;1(0,0) = 0,

with similar equations in cases (bl), (b2), (c). We can compute the g;;(0,0) from
equation (I) on page 90 and the £;;(0,0) from equation (3) on page 110. It is
then a simple calculation to check that we do indeed have

J(p) = Z Z Lijloocdg77¢%"  ar (0,0)

i,j.k=1 p,0,1=1

1
= J4L(p). T(pit,.

Since both sides of our formula have an invariant meaning, the formula must
be true for any coordinate system. «»

Notice also that for a moving frame Xj, X, as on page 106 we have

1
J = 3 Z(Cijk)z

ij.k

n the eclliptic case, with a similar formula in the hyperbolic case.

Now that we have obtained the imvariant J, there is an obvious question
staring us in the face: what are the surfaces with J = 0 evervwhere? In ordinary
surface theory we found that surfaces with &y = k> = 0 evervwhere are planes.
It seems natural to conjecture that the surfaces with J = 0 evervwhere are just
the surfaces which can be described by quadratic equations. Now this isn't true.
and the reason is essentially because we have J = 0 in case (c) of Proposition 17.
In cases (a), (bl). (b2). the vanishing of J(p) implies the vanishing of T (p) [as
i1s also clear in case (a) from Proposition 18]. Leaving the complexities which
anse because of case (¢) to later Problems (4-11. 15), we restrict our attention to
surfaces with T = 0 evervwhere.
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19. PROPOSITION. If M C R3 is a connected surface with all points elliptic
or all points hyperbolic, and I = 0 on M, then M is a quadratic surface, that
is, M = W=1(0) for some W: R* - R of the form

Wi(xy, x2,x3) = Za,-jx,-xj + Zbix,- +c.

ij i

(These surfaces are described in greater detail in the next chapter; at the mo-
ment it is only necessary to note that the affine linear image of a quadratic
surface 1s also a quadratic surface.)

Conversely, every non-flat quadratic surface has I = 0 everywhere.

PROOF. As usual, we consider only the elliptic case. Take a moving frame
Xi, X2, X3 on M as on page 106. If I = 0, then all ¢;jx = 0, so equation (l) on
page 106 shows that

and in particular

This implies that
- 2 . . 2 .
dy; + Zw,’( ApF = —(dlﬂij + Zw,ﬁ A 'ﬁ,k)
k=1 k=1

But
. 2 - .
i) dyf ==Y Vi nvf — YAy
k=1
2 . . .
=—Zlﬂ;{/\l//jk — lﬂg/\ej,
k=1

s0 we obtain
Yingl = —(y! A0

Taking i = j, we see that ¢! is a multiple of 6’. and taking i # j we see that
the multiples are the same for each i. so we have

(2) Yi=a-0'



Elements of the Theory of Surfaces in R? 119

for some function . Taking ¢ of equation (2) gives

2
=Y Vi AYY =dy =da nb +adb’
k=1 H
—Zw,’(/\a.ek:da/\e’ —a(zw,’(/\ek),
k=1 k=1

and hence
da A6 =0.

Thus do = 0, and « 1s a constant. We consider two cases.

Case 1. @ = 0. Equation (2) shows that ¥} = 0, so for tangent vectors X on M
we have

2
VIXv = leX3 = Zlﬂg(X) - X = 0,
i=1

1.e., v 1s constant; we will use 1t as one of our axes. We also have, by (1),
2
i ] k
dyj ==Y Vi Ay)
k=1

Since lﬂ; = wj’:, which are the connection forms for the metric { , }, this equa-
tion shows that { , } 1s flat. So we could have chosen our orthonormal moving
frame Xi, X; to be of the form X; = f; for some isometry f: U — R?, where
U C R? has the standard Riemannian metric; and with this choice we have
lﬂ; = a)j’: = 0. Now we have

2
fiy =V fi = o WE) - Sk W) -
i=1
=0+ 0'(fj)v = &;v.
So f is of the form

1
J(s,t) =¢ +bys + bt + ;(s2 + %)

for constants by, b, ¢.
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Case 2. a # 0. Now equation (2) shows that
2
Vigv = Za@’(X) Xi=aX.
i=l

So for any f: U — M C R* we have
. . , 1
Ni=afi = N=af +§ = [ =_(N—f)

for some constant vector 8. Hence it suffices to show that v satisfies a quadratic
equation.
Let X be the 3 x 3 matrix

X = (X1, X2, X3) = (X1, Xa,v)

where the X; are considered as column vectors. Then dX is given in terms of
the 3 x 3 matrix ¥ = (¥g) as

(1) dX=Xy.

Since ¥ is actually

1//11 \//21 af!
v=_v2 v ad? |, yi=-v/,
gt 62 0

we casily see that if we set

1 0 0
A=]10 1 0
1
0 0 —5
then
(2) V-oA+A-yt=0.

Thus we have
dX-A-XH =dX-4-X+X-4-dX*

=Xy A XX A gt XY by (D)
=0 by (2).
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We can assume that X is the identity matrix at some point, so we obtain

X-4-X'=4 = (47" X-4) X' = identity
= X' (47X A) = identity

1 0
— Xt 4. X=4""=|0 1 0
0 0

The (3,3) entry of this equation gives

which 1s a quadratic equation for v.
It is not hard to show, conversely, that all surfaces of the sort we have obtained
have T = 0. These are the only non-flat quadrics (see Problem 3-6).

We proceed in our study of special affine surface theory along the very same
route followed in ordinary surface theory, by looking for the equations express-
ing the derivatives of a moving frame Xi, X>, v in terms of this frame, and by
looking at the mntegrability conditions for these equations. We will always work
only with the elliptic case, leaving the hyperbolic case to the reader. We already
have the analogue of the Gauss formulas,

xY =VxY +4(X,Y)+{X,Y}v,
or in terms of a map f: U — R3,

fii=Ye i+ s(fi. i)+ 9N
2 2
=35 S+ St S+ gy
k=1 i=1

in terms of a moving frame (X7, X5, v) with X;. X, orthonormal for { , } we
have

2
J J .. 0k 3 i
v = w; +Z(,'jk9 . v =0"
k=1
The strange way in which the special affine Gauss formulas interchange the

roles of TV'yY and LV'x Y. as compared to the ordinary Gauss formulas, will
be reflected by funny twists throughout the development.
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The next thing we seek is an analogue of the Weingarten equations. Now we
know that
VGLQTE ﬂﬁ”

so for amap f: U — R? we always have
2
j .
Ni=D 61
j=l
for certain functions 4] with

2
{ni, fit = Z £24,5 = bij, say;

p=1

for our moving frame we have

2
Vv =VxXs=Y ¥iX)- X,

i=1

Unlike the situation in ordinary surface theory however, it is not at all clear
how, or even whether, the 19{ and 6;; are related to the £;;. This is answered
in a very unexpected way when we look at the integrability conditions for the
special affine Gauss equations. These can be derived from the formulas for fi;,
exactly as in the first part of this chapter, or from the formulas for V'x Y, as in
Chapter 1. But since the computations are quite involved, no matter how one
does them, it will be easiest to use the moving frame version. We begin with
the tangential part of these equations,

2
(1) vl =0l +) apb*.
k=1

We take d of this equation, remembering that Y = 6. and introducing the
curvature forms Ql’ for the a)i’ , to obtain

2 2
@ =Y vwiayl v nb == wlrel +Q

p=1 p=1

2 2
+ Zd(’ijk AOF + Z('deGk.
k=1 k=1
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Substituting back from (1) we have

— Z{w{, + Z(’pjkek} A {a)'p + Z(‘,‘pkek} — lﬂ; /\Oi
o k k

j p i k .
:—Zw{,/\wi+9i +ch,-jk/\0 —Zcijkw:j/\O".
P k k,p
Using 0! = —wf, and switching dummy indices in the last term, we get

) = Y. cociont* A0 — yi A6
o,k,l

J , 0 4 0 k
=Qf + Z[d(,-jk - Zcpjkwi - Zc,-pkwj - Zc,-jpwkil NOE.
k 4 P P

To interpret equation (3), we apply it to two vectors, X,Y. The first term
becomes

(3a) Z Cjkpcilpek(Y)el(X) - Z c,-klc,-lpOk(X)Ol(Y)
0.kl o,k,1
={4(Xi, X), 4(X;, Y)b — {4(Xi,Y), s(X;, X)}.

The second term becomes

(3b) Y0 (X) — p{(X)6'(Y) = dv(Y), X;b - X, X;
—{dv(X), Xj} -{Y, Xi},

while the first term on the right becomes simply
(3¢) {(R(X,Y)X;, X,

where R is the curvature tensor for { , }. To interpret the last term, we recall
that the tensor

I = Zc,-jkei ®0j ®0k
has a covariant derivative YI(X,Y,Z, W) = (Y I)(X,Y, Z), which can be
written

YI= > cipb' ®6/ @656, say
i,j.k,l
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Using Corollary 1.6-5 one easily checks (Problem 5) that

, I _ . . o . o . o
Z(ijk;le =dcijk —Z(pjkwi —Z(,-pka)j —Z(,-jpa)k.

) o o o

So the last term 1s

1. gk
Z(‘fjk,-/Q N 6",
k.1

which when applied to X, Y aives

(3d) 3 i 01 OO = D eijpst 61 (V)0 (X)
k1 k.1
= (VxI)(X;, X;. ¥) — (Vy I (X3, X;, X).

Writing (3a) + (3b) = (3¢) + (3d), but replacing X;, Xj by arbitrary tangent
vectors Z, W, we thus obtain

A) {(RX,Y)Z, W) =(VyI)(W,Z,X)— (YxI)(W,Z,Y)
+ (W, Y), 4(X,Z)) — {(s(W, X),4(Y, Z)}
+{dv(Y), Wy X, Zy = {dv(X), W} - (Y, Z}.

Interms of amap f: U — R3 tlns becomes
Rk = Liksu — Linse + ) Ehebiow = 1, jok)
o

+dinbu; — Ginb;-

Now what do these equations tell us? In ordinary surface theory we obtained
the Theorema Egregium. telling us that the mtrinsic Gaussian curvature K s
equal to some expression nvolving the coefficients of 1L But now we don’t get
anvthing of the sort, because we have the unknown expressions* dv (or b;;).
Instead. equation (A) allows us to solve for {dv(Y). Wi—we just have to choose
aunit vector Z with {Y. Zy =0, and set X = Z.

*Note also that the terms inolving 5 i equation (A} are the negatives of the corre-
sponding terms involving s i the ordinary Gauss equations.
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An especially nice formula for dv can be obtaimed with a litle more work.
Recall first of all that for a map f: U — R? we have the apolarity conditions

0= ¢ty = 0= Y (4 i)k
I iy

= Z g ik by Ricer’s Lemmia.

For orthonormal X;, X> tlns means that

3 (V)X Xi,Y) =0,

[Naturally, this formula can also be derived directly from the apolarity condition
Y WX, Xi,Y) =0, but the coordinate treatment is much easier and quicker.]
Soif K is the intrinsic Gaussian curvature for the metric { , §, then equation (A)
gives

= Z{Z(vx LX), Xi, X )} Z{Z(Vx D(X;. Xi, X )}

J

+ ) G (XGL X)L 5 (X, X)b = ) {8 (X, X)), 8(Xa, X))

i ivj
+ 3 4dv(X)). Xph B — Y {dv(Xp), Xjb -8
i i
=0-0+ Z CijkCiik — Z (Cijk )?
i.j.k i, j.k

+’Z (v (X)), X)) — Z{dv(X-) X
:Z"jjk(zfiik) Z((,]k) +Z {dv(X;), Xjb.
j-k i ij.k

Now Y, ¢;ik = 0 by the apolarity conditions, so we have (sce page 117)

(1) —2K = =20 + Y dv(X)), X,

J
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where J is the Pick invariant. But as another consequence of equation (A), and
the symmetry properties of R, we also have

2) 0= {R(X;, X)Xi, Y} + SR(X;, X)Y, X;b

=0-23 (Vy I)(X.Y, X;)

1

+ D 4dv(X), Y8 = ) {dv(Xi), Yh X, X

+ D {dv(X), Xay X, Yy =) {dv(Xp), Xiy (X, Y

i

=23 (Y, L)X, Y, X;) + 2{dv(X), Y}

1]

= ) {dv(Xp), Xib (X, Y

To interpret the sum ) ;(Vx, I)(X, Y, X;), we again switch to coordinates for
simplicity, noting to begin with that the sum is easily shown to be independent
of the particular orthonormal X, X; chosen. Now this sum is just the value of

Z 9" briss = Z i
i,J j
when we happen to have X; = f; ( = 1,2) and fy = X, f, = Y. Since
> [liu ; are the components of a tensor, namely the tensor
3(X,Y) = trace(Z = (YVZz3)(X, Y)),
we must, in fact, always have
Y (VG I)(X,Y, Xi) = (X, Y).
i

Thus equation (2) can be written

(3) Udv(X), Yy =Y {dv(Xi), Xib {X, Y} +25(X,Y).

i
Substituting in from (1) we obtain

4 {dv(X),Yy=(J —K)-{X, Y+ 8(X,Y),
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the analogue in ordinary surface theory being
(dv(X),Y)=—-K-(X,Y).

We can solve equation (4) for dv(X) explicitly by introducing the tensor 4 of
type (}) defined by

(8(X),Y) = 8(X,Y).
Then we have

(B) dv(X)=(J — K)- X + 8(X).

In terms of a map f: U — R* we have

buk = g - (J =K+ Y 41,
J
=Yuk - (J = K) + Ly, say;

in terms of our moving frame we have
¥ =0 =50+ cijpid’

ik
=(J - K)o/ + ZC,-,-Oi, say.
i

Conversely, it is not hard to see that if we define dv(X) [or the £, or the lﬁ:{]
by these formulas, then equation (A) [or the coordinate equation right below it,
or equation (3) on page 123] is satisfied.

As one immediate consequence of equation (4) we find that the special affine
normal v has another property in common with the ordinary normal v:

20. PROPOSITION. The map dv: M, — M, is self-adjoint with respect to
the inner product { , %, on M,,

{dv(Xp), Yo =X, dv(Y),)) for X,,Y, € M,.

PROOF. We just need to show that (X,Y) = 8(Y, X). This follows from the
symmetry of 4, and the definition of 4 (on page 126). ¢
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The eigenvectors of —dv: M, — M, are naturally called the special affine
principal directions at p, and the corresponding eigenvalues are the special
affine principal curvatures #; and 4,. The special affine mean curvature .7
and special affine (extrinsic) curvature Key, are then defined by

1
H =3
Kext = kl Ry

If Xy, X5 € M, are orthonormal, then

2
1
H(p) = =3 ) Adv(X)). X},

ji=1
So equation (1) on page 125 shows that we also have

H=K—-J.

We have obtained these results by looking at the integrability conditions for
the tangennal part of the Gauss formulas. Now we will look at the integrability
conditions for the L component,

Exterior differentiation gives

2 2
=Y Vi Ayl =dot == "yl A6k
k=1

k=1

or

Y Ayl =)0 Ay or Y wl+yh ok =0
k k

k

But these conditions are automatic. for we derived this equation i the proof of
Proposition 16 (conversely. the equation follows immediately from equation (2)
on page 106 and ssmmetry of the ¢;jk).

On the other hand. we stll have to look at the conditions which sav that
Nij = Nji. In ordinary surface theory they reduced to the Codazzi-Maiardi
equations: now we will obtain new conditions. The moving frame version of
the formula for .A; is that on page 127.

I vl = - K6/ + ) 0"
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Exterior differentiation gives

=Y Wiyl =dJ = K)n0) + (J = K)db) + D dCi; A6

p i
_ZCij/\(ZwL/\Qp)'
i p

Substituting in for \//é‘ from (1), noting that — 3~ \//,f ABP = dB7, and switching
dummy indices in the last term on the right, we have

= Cop¥i AO = d(J = K) NG Y dCy A0 =Y Cpj Awf A
i,p i ip
Now writing the \//;{ in terms of the w,g we get

- Z Cipw;{ A Qi - Z Cip(’jpkgk A Qi
iLp

i,p.k
=d(J — K)YAOT +) " dCy nb' = Cpj nwf A
i ip

Finally, since w) = —wj’-J, we can write

@) = ) Ciptjok0* A0

i,p.k
=d(J — K)nb/ + Z[dC,-,- =D Gy nel =) C,-,wa} N
i [) P
To interpret this equation, we first apply it to (X, X;). The left side gives

(2a) D Ciptjpi0 (X) = Y Cipejpk 8 (X).

ip o,k

The first term on the right side gives
(2b) X(J —K)—X;(J — K)-67(X).

For the other term on the right side we note, as on page 123, that the tensor
8 =2, Cijt" ®6/ has a covariant derivative

V8= Cijub' ®6) @6%,
ij.k
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where (Problem 5)
Y Cijab* =dCij =Y Cpief = > i
k 0 0
So the second term on the right side of (2) is
Y Cijkb* A6,
ik
which when applied to (X, X;) gives

(2¢) Y Gk (X) = Cij67(X).
k i

We now take the equations (2a) = (2b) + (2¢) and add them for j = 1,2 [the
resultant equation is equivalent to the individual equations, for if a 2-form «

satisfies 212.=1 (X, X;) =0, then also a(X;, Xj) =0 fori = 1,2], obtaining

(3) Zcip(zc,,p) HN(X) — Z(Z C,pc,pk)ek(X)
ip j k i
=2X(J - K) = X(J = X)

+ Z(Z ij:.k)Ok(X) - Z(Z Cij,~j)0i(X)~
k J i J
Now we have

(3a) Z Cip (Z cjjp) 0 (X)=0
i, J

by the apolarity conditions )~ ¢jj, = 0. In order to interpret the term involving
;.0 CioCjpk we introduce the tensor § % T of type (y) defined by

2
SxL(X)= ) S(Xi X;) T(X, Xi. X)),
i j=1

where X1.X; is any orthonormal basis; it is easily checked that this definition
is independent of the choice of such basis. [This is the simplest description
of 4% I—a completely invariant definition requires an orgy of linear algebra.
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Classically, %1 is simply described in terms of its components, which are given
by the 4-fold contraction

3 M4 Loil),

iLu,p,0

where £Ls; are the components of 8.] Now we clearly have
(3b) - Z(Z C,-pc,-pk)ek(X) = — 8+ L(X).
k i

To deal with the term }; Cj; x it is again simplest to switch to coordinates. We
have the apolarity conditions

0= Z%ij[ijp
ij

= 0= Z 4" 9"l = Z Ry

i,j,p ij
= 0= Z (%U [;;);u = Z gij([;;m) by Ricei’s Lemma
i,j,/L iaja/L

= ¢" (Z [5,%) = 47 4Ly
i,j [ ij

= 0= Z(%ijccij);k = Z gijcfij;k, again by Ricci’s Lemma.
iJj iJ

This tells us that
<3C> chj;k =0 —= Z(chlyk)ek(X)=0
J k j

[which can also be obtained, with some pain, directly from the apolarity con-
ditions }; ¢;jx = 0]. Finally, we note that

(3d) - Z(Z c,~,-,-,~)0"(X) ==Y (Vx8)(X, X))
i J J
= —trace(Z — (Vz3)(X)),
by the very same argument that was used on page 126. Now the equation

(3a) + (3b) = X(J — X) + (3c) + (3d)
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yields

The Special Affine Codazzi-Mainardi Equations:
X(J = X) = trace(Z = (Vz5)(X)) — 8% L(X).

In terms of a map f: U — R? we have

(J - K)j= ngxu}';i - Z guigpavﬁoi[upj-
w,i i,u,p.0

Finally, we are ready to state

21. FUNDAMENTAL THEOREM OF SPECIAL AFFINE SURFACE
THEORY (RADON; 1918).

(1) Let M, M C R? be two connected surfaces in R3, both consisting entirely
of elliptic points or both consisting entirely of hyperbolic points; in the former
case give both surfaces the usual orientation, and in the latter case, suppose that
each surface is also oriented. Let v: M — R? and #: M — R? be the affine
normal vector fields (determined by the orientations), and let I, I and I, I be
the first and second affine fundamental forms for M and M, respectively. Let
¢: M — M be an orientation preserving diffeomorphism such that

P*1 =1 and o*0 = 1.
Then there 1s a special linear affine motion 4: R* — R? such that ¢ = A|M
and A,v = 7.

(2) Let M be an oriented 2-manifold with a (not necessarily positive definite)
metric § . ¥ having covariant derivative V, curvature tensor R, and curva-
ture K. Let § be a symmetric tensor on M of order 3. Define

1
J = 5{{8.8}}.

where § . § is the inner product on tri-linear maps determined by the inner

product § . ¥, and define 1.4, ] by

US(X.Y). ZY = S(X.Y.Z)
3(X.Y) = wace(Z — (Vz3)(X.Y))
UB(X).YY = 5(X,Y).
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Suppose that § satisfies

(1) The Apolarity Conditions:

trace(X — 4(X,Y)) =0

(2) The Special Affine Codazzi-Mainardi Equations:

X(J — K) = trace(Z > (Yz8)(X)) — 8 * S(X).

Then for any point p € M there is a neighborhood U of p and an immersion
f: U — R? such that

g, n=s11
§ = f*I,

where I and T are the affine first and second fundamental forms on f(U)
determined by the orientation f(U) gets from the orientation on U C M.

This can be proved in the same way that we proved Theorem 3, using the
classical integrability theorem (I.6-1). Or the Frobenius form of the integrability
conditions.can be used (see the treatment for ordinary surface theory in Chap-
ter 7). One can also reduce the theorem to Theorems 1.10-17 and 1.10-18; our
integrability conditions reduce to the equations of structure of SL(3,R).
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PROBLEMS

1. Consider the Codazzi-Mainardi equations in Corollary 1-12, but write
(VxII)(Y,Z) = X(AL(Y,Z)) — II(VxY,Z) — 1I(Y,VxZ), and similarly for
(VyID(X, Z). Choose X = f;, Y = f,, and then Z = f; or f;, to obtain
equations (B’) on page 56.

2. From equation (x*) on page 53 show that
Nij =— Z(l,hj + ZlfF:,'j)fh — Zghplp;lth.
h P h.p
Conclude that the equation N;; = Nj; is equivalent to

h h h h
I+ ) I =10+ ) 1Ty,
P P

Wirite ll-h =3 g™ I;, and similarly for 1}', and expand. Multiply by >, gz,

and then use Y, geng™ j = — Y, geh.;&"%. Show that the resulting equation

is equivalent to the Codazzi-Mainardi equations, by making use of the identity
gik,j = [ij, k] + [jk,i].

3. Use the method of Problem 1-5 to prove that we can take U to be all of M

in Corollary 5 when M is simply-connected.

4. (a) Find a continuous map f: R — S' which is onto and locally one-one,
but not a covering map. Hint: Take part of the universal covering space of § L
(b) Let f: X — Y be a continuous map which is onto and locally a homeo-
morphism, and let X be compact. Then for every y € 7, theset f~1(y) C X
is finite, say f'(y) = {x1,...,xk}. Choose disjoint open sets Ui > x; such
that f is a homeomorphism on each Uj, and let U = [); f(U;). Using com-
pactness of X, show that there is a compact neighborhood K C U of y such
that f~1(K) C |; Ui. Conclude that f is a covering map.

5. Let Xi,..., X, be a moving frame on a manifold with a connection V. Let
A=) ai.i " @ ®O%
be a tensor field of type (1(;), and let
VA= i, 400" @ @ 0% @6,
Use Problem 1-1 to check that
Zai,...ik;IQI =daj,..i, — Zapiz...ik wf =~ Zail...i,\._,pw,i-
I o o



CHAPTER 3
A COMPENDIUM OF SURFACES

In the following chapters it will often be quite useful to have a detailed knowl-
edge of the classical surfaces. In this chapter we will hst all the important
ones systematically, together with many of their properties; other properties will
be mentioned in later chapters, when we have the theorems necessary to derive
them. A brief survey of the initial pages may prove quite discouraging, but the
reader can be assured that after the basic formulas have been derived once and
for all, the reading becomes a lot more pleasant—there are pretty pictures to
draw, and interesting points to be made.

Usually we will represent a surface locally as the image of an immersion
f: U — R} We collect here the formulas from the previous chapters, with a
few additions which are used for actual calculations.

E={/, M) F={Ah, /) G = (/2 /2)
N — N x fr _ N x fa
Ifix 2l VEG - F2
(A) | = (—Nl,fl) m = (—N1,f2) n= (_NZ, f2>
= (N, /i) = (N, fi2) = (N, f22)

(flz) fzz)
det | f det| £
_ S _ /2

VEG — F? vVEG — F? vVEG — F?

(Here we have made a specific choice of N, which will influence the sign of
various quantities to be computed later on.) We also recall that

(matrix of —dv: M, — Mp)

).
with respect to (f1)p. (f2)p (gij) i)

_ 1 G -F [ m)
T EG-F2 \-F E m n

[ fi> gij.lij evaluated at (s,1); where p = f(s,1)].

128
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The principal curvatures ki, ky are the eigenvalues of this matrix, and the
Gaussian curvature K is k; - k2, while the mean curvature H is (ki + k2)/2.
So K and H are the determinant and half the trace, respectively, of this matrix.
This gives us

In — m?
K= EG_F? (The sign of H depends
(B) on the choice of N, but
_En—-2Fm+Gl the sign of K does not.)
T 2AEG-F?

In equation (B), the left sides H and K must be evaluated at p = f(s,7) when
the right sides are evaluated at (s,¢); similar conventions will be used in the
remaining equations. We remind the reader that it is also possible, in principal
at least, to compute K directly from E, F, G. Since ki, k3 are the roots of the
equation A% — 2HA + K = 0, we have

' (The signs of ki, k,

G kiky=H++vH?—-K. both change when
N is changed.)

It is, as usual, rather more difficult to find the principal directions, that is, the
eigenvectors of —dv. We leave it to the reader (Problem 1) to show that

a1 fi + az f2 1s a principal vector if and only if

(D) azz —d1d) a12
det| E F G | =0
/ m n

We have already pointed out that at an umbilic point we have the necessary
and sufficient condition

- _ at an umbilic point, (The sign of &
) JI=kE m=kE n=kG Gk =k, = k. depends on N)

This condition can also be derived from (D), since the determinant must be 0
for all choices of ¢y and a>. It 1s also clear that

) ay fi + ay f> is an asymptotic vector if and only if

,
lay* + 2mayas + nay? = 0.
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Finally, it is easy to see that

(G)

If F=m =0 ata point, then f; and f>
are principal vectors there, and

: [ : no,
—dv(fl):Ef], —dV(f2)=5f2- |
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When our surface is actually the graph of a function 4: R? — R, so that we
can choose

f(s,t) = (s,t, h(s,t))

fl = (I,O,hl(s,[))
J2=1(0,1,ha(s,1)) Jij = (0,0, h;j),

we obtain the following formulas:

(A)

()

E=1+h? F=hhy G=1+hy
—hy,—hy, 1
N — (=hy,—hy, 1)
V14 2+ h?
[ = hi _ hiz _ ha2
V14 hi2+hy? VI h2+h? V14 hi2+h?

H

_ hiha = hi?
- [1+ 72+ h?)?
U+ hPhz + (L+ hhy = 2hihahy,
o 21 +/112—|—/122]3/2 '

ki,k=H++vH? - K.

ay fi +az fo = (ar, az,arhy + azhy) is a

principal vector if and only if

a22 —dap 6112
det 1+/’112 hih; 1+/122 =0.

hi hiz ho
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(E) hyy = k(1 +m?), hiy=kihy, hay=k(1+h?)
at an umbilic point, with ky =k, = kv/'1 4+ =% + b2
ar fi +ax fo = (ar, a2, a1hy + axhy) 1s an
(F') asymptotic vector if and only if

hna? + 2hiaavas + hpas® = 0.

It is also quite useful to be able to compute K and H for surfaces
M ={peR*: W(p)=0},

where W: R* — R. Recall (pg I1.113) that we can choose

v = TZ for Z = (Wi, W, Ws).
If X = (ay,a2,a3)p, then
Z 1 |
—dv(X)=-Vy—=-—=—VyZ - X (——) Z
|Z| |Z| |Z|
| |
= —I—Z—I(Z,-aiWn, Yo raiWa, Z,-aiWy) -X Z] Z,
[
normal to M
S0 |
{(—dv(X),X) = 1z >ijaiaj Wi [Wij evaluated at p).

This means that the principal curvatures k1, k> at p are —1/|Z] times the max-
imum and minimum of

> jaiajWi on S = {(ar,a2,a3): Y ;a* = 1and ) ;a;W; = 0}
(Wi, Wi evaluated at p].

Using Lagrangian multipliers (see Problem 3, if you have forgotten them), these
extrema occur at (ay,d2,a3) € S if and only if there are A, u such that

D; (X aiaxWix) = AD; (3, a®) + uD;(>_; aiWi) for all ;.
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Using Wi = Wy;, we find that
2iaiWij =Aaj + %Wj

Yial=1, Y;aiW;=0

Since we then have Zl-,j a;a;Wi; = X, this shows that the desired maximum

for some A, p.

and minimum values of }_, - a;a;Wi; are precisely the numbers A for which
we have

2.;aiWij = ha; +%W;‘
2iaiW; =0

We can also write this as

for some (a1,az,a3) # 0, and some u.

ay ay u Wi
Wij) | az | =A} a2 | + P e for some (ay,az,a3) #0,
(x as as Wi and some .
> iaiW; =0
Now, since
Wi a a a Wi
(Wij) —Al | W, as Wiy lal—Ala ]+ W
W3 as aj as Ws
Wi W, W3 0 t Wi +axWr +asWs

we see that () holds precisely when there exists (a1, az,a3,t) # 0 so that the
right side of the above equation is the 0 column vector. Thus the desired A’s
are those for which the left-hand 4 x 4 matrix has determinant 0:

1
VW2 + W2 + Wy2

where A; are the roots of the quadratic equation

ki =

i

(CN) Wl

Wij)—rl | W,
(%) det =0.
W3

Wi W, W3 0
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Consequently,
K = 1 constant term in (x:x)
(B") W24+ Wl + W32 coefficient of A2 in (s)
H= 1 coeflicient of A in ()
- 2\/W12 + W2 + Wy coefficient of A% in (**)'
<C//> k] , k2 =
H+VH? - K.

In particular, to anticipate the case of greatest interest for us, we find:

A 00
(k) If (W;;) =1 0 A2 0 |, then
0 0 Ay
1
K= Wilhohs + Walh s + Witk
(W12+W22—|—W32)2[ 17A2A3 + W2 AA3 + W3 12]
1
H= Wi2(ha + A3) + Wal (g + A3) + Wil (A + A2)].
2(W12+W22+W32)3/2[ 1202 + A3) + WP (A + Aa) + W52 (4 42)]

[In all the formulas given so far, the sign of ky,k; and of H depends on the
choice of N as the normalized vector (W), Wa, W3) ]

Since X is a principal vector if and only if (dv(X) x X.v) = 0, we also see
that

X = (a1.4az,a3), is a principal vector if and only if
Wy daiWi a
det | Wo Y ,aiWa a2 | =0 and ) ;a;W;=0.
Wi Y aiWs  asz

(D)

There does not seem to be any especially simple condition for an umbilic, but
we do know that p is an umbilic if and only if the determinant in (D) is 0
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for all (ay,az,az) with Y, a; W; = 0. Finally, we have

X = (ay,az,as3)p 1s an asymptotic vector if and only if

(F//)
2iaiajWiy =0 and 3, a;W; =0.

We are now ready to begin our systematic list of surfaces. They come under
five headings.

I. THE CLASSICAL FLAT SURFACES

1. Plane

For any plane, the normal map v is constant, so dv = 0. Thus all points are
umbilics with k1 = k = 0, and K = H = 0. All vectors are also asymptotic.
The plane is actually a special case of

2. Generalized Cylinder

Here our surface is M = {(x, y,z) : (x,y) = c(s) for some s}, where ¢ is an
immersed curve in R?, which we assume parameterized by arclength.

v

The normal map v is always parallel to the (x,y) plane. One principal
direction at any point is (0,0, 1), with &; = 0. The other principal direction
at (c(s),z) 18 (¢/,0) = (n,0), with k> = «(s), the curvature of ¢ at s (here we
choose the normal map v to be (n,0), where the normal n for ¢ is picked as
on pg. I1.6; recall that 0'(s) = —k(s) - ¢/(s). while k> is an eigenvalue of —dv).
Hence K =0 and H = %K(S).

The only asymptotic direction is (0,0, 1), unless k(s) = 0. in which case all
directions are asymptotic.



142 Chapter 3

3. Generalized Cone
Our surface is parameterized by

f(S,t) =V —|—[[C(S) - V]7

where V € R? is the vertex, and ¢ is an immersed curve in R?. For f to be an
immersion, the vectors

fi=td and fa=c-V

must be linearly independent, so we must have ¢ # 0 (V cannot be in the surface)
and ¢’(s) linearly independent of c(s) — V.

Since the tangent space at f (s, () is spanned by ¢/(s) and ¢(s)— V, the normal
map is constant along the straight lines obtained by keeping s fixed. Conse-
quently, the vectors fo(s,f) = c(s) — V are principal vectors, with k; = 0.
Therefore K = 0. Once again, these vectors are also asymptotic, and there are
no others, except at points where H = k3/2 happens to be 0, in which case all
vectors are asymptotic.

4. Tangent Developable
This surface consists of the tangents to a curve ¢ in R? (parameterized by
arclength as usual). It can therefore be parameterized by

fls,0) = c(s) +1'(s).
We have

where n 1s the normal vector

12 " /
(: —_— * 3
ﬁ =c +t = + tKn, Of c, a]ld K 18 t]l( curvature

fr =c';

so f is regular if ¢ # 0 and « # 0. Thus this parameterization does not allow
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the curve itself to be part of the surface. In fact, the surface consists of two
sheets which meet along the curve in a sharp edge (the edge of regression or

cuspidal edge); at any point of the curve, the normal plane intersects the surface
in a curve y with a cusp. This 1s shown below for our “standard curve” of
pp. 1. 30, 31.

=l ¢ (below the (t,n)-plane)

~

¥ (below the
(t,n)-plane)

Actually, the assertion we have just made requires some careful interpretation,
as can be seen by considering the case where ¢ lies in a plane. The two sheets
of the tangent developable are then the same portion of this plane, and their
intersection with a normal plane is just a ray. In general, we can analyze the

normal plane

=
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intersection of the tangent developable and a normal plane to ¢ as follows. For
convenience, we consider the point s = 0, and assume ¢(0) = 0 and that t, n, b
lie along the three coordinate axes. For small s # 0, the vector ¢’(s), being close
to t = ¢’(0), does not lie in the (n, b)-plane; moreover, c(s) also does not lie in
the (n,b)-plane. Now we can write (using the Serret-Frenet formulas)

2 3

7y ST m 3
0) + gc (0) + o(s”)

c(s) = ¢(0) + s’ (0) + 5¢

SZ 3
= (0,0,0) +5(1,0.0) + = (0.x,0) + %(—xz,x’,n) +o(s%);

here ¥ = «(0) and T = 7(0), and o(s?) is a function with the property that
o(s3)/s* — 0 as s — 0. Similarly, we have

SZ

c'(s) = ' (0) + sc"(0) + ?c’”(O) + o(s?)

2
A
= (1,0,0) + s(0,«,0) + 7(—/cz,lc’,m) + o(s?).

Combining, we have

() f(s,1) =c(s)+tc(s)
2 3
= (0,0,0) +5(1,0,0) + Z-(0,16,0) + = (=", k7) +0(s”)

+t [(1,0, 0) + 5(0, k,0) + ;(—KZ,K’,KT) + o(sz)] :
For each s there is £(s) for which f(s,£(s)) lies in the (n, b)-plane, which means
that the first component of f(s,(s)) equals zero:
s — K—6253 +o(s) +1(5) [1 — K—;sz + o(sz)] = 0.
Dividing through, and giving just a litte thought to the meaning of what we

are doing, we find that

2
Hs)=—s5 — ?sz +o(s%).
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[Here, and below, o(s®) represents some new function with the property that
o(s%)/s* — 0as 0 — 0.] Substituting back into (), we find that

2nd

component of £ (s, ((s)) gsz + o(s2) + 1(s){xs + o(s)}

L) 2
= —=5"+o0(s7),
5 (s%)

3rd

component of f(s,t(s)) %s3 + o(s3) +1(s) {K?Tsz + o(sz)}

KT
- —?s3 + o(s%).

Thus, in the (n, b)-plane, or, in other words, in the (y, z)-plane, the intersection
is described up to first order as the curve

K 5 KT

s (_ES ,——33) = (y(s), 2(s));

This analysis leads one to suspect that a single branch of the tangent devel-
opable can be extended so as to include the original curve, though, to be sure,
a different parameterization is required. This is most obvious for a plane curve;
one obtains an immediate extension if one uses lines perpendicular to the curve
as t-parameter lines. Presumably in the general case we obtain a nice param-

eterization of {c(s) + t¢’(s) : t > 0} when we choose as one set of parameter
lines the intersection of the surface with normal planes to the curve.



146 Chapter 3

Since the tangent space at f(s, ) is spanned by ¢’(s) and n(s), it is the same
along the straight lines obtained by keeping s fixed. So the normal map is
constant along these lines, and the vectors f2(s, ) = ¢(s) are principal vectors,
with k; = 0. Once again, K =0.

Since all the surfaces in our firstcategory are flat, they are all locally isometric
to the plane (that is the reason for the name “tangent developable” —a “devel-
opment” of one surface on another is the very classical name for an isometry).
The reader may easily construct isometries between the plane and generalized
cylinders or cones. To map the tangent developable of ¢ isometrically on the
plane, we note that f, f, and consequently E, F, G, depend only on the curva-
ture k of ¢, not on its torsion. So if ¢} is a plane curve with the same curvature as ¢,
then our original surface is 1sometric to the tangent developable of ¢y, which is
a subset of the plane. As an application of this fact, we note that the tangent
developable of a helix (which has constant curvature) can be constructed from
a piece of paper by cutting a circle out, and twisting the remaining portion
around a cylinder.

All the surfaces in our first category are special cases of the surfaces in our
second.

II. RULED SURFACES
These are the surfaces which can be parameterized as
f(s,1) = c(s) +18(s)
for two curves ¢, 8. Since
fi=c +¢t8 and f, =34,

the map f is an immersion when § and ¢’ + t§ are linearly independent. In
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particular, if § and ¢’ are linearly independent, this certainly happens for suffi-
ciently small ¢. For fixed s, we obtain straight lines [or segments] through c(s);
these straight lines are called the rulings of the surface. The ruled surfaces which
are not generalized cones or cylinders, or tangent developables, are sometimes
called serolls.

A calculation shows (Problem 4) that

—m? —{c’, 8 x 8')?

K= - .
EG—F2  |(c' +18) x 8|2

A more reasonable formula for K is obtained when we choose our parame-
terization more carefully. Note first that we might as well choose 8 to be a curve
with [8(s)| = 1 (and consequently (8(s), 8'(s)) = 0); it is then called the directrix
of the surface. Next note that if ¢ is replaced by any curve which intersects each
ruling only once, and the directrix is kept the same, then we obtain the same

surface. Let us assume that we always have §'(s) # 0 (“the directions of the
rulings are always changing”). Then the ruling L through c(s) 1s not parallel
to the ruling Ls4¢ for small &, so there is a unique point P(g) on L; closest to
Ls+e. One can show (Problem 5) that as ¢ — 0, the point P(g) approaches the
pomt

(c'(5),8'(s))
(6'(s),8(s))

We easily find from this that (¢/(s),8'(s)) = 0. This is the only curve ¢ that
can have this property: the point ¢ (s) is simply the unique point on L where

o(s) =c(s) — - 8(s) on L.
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the tangent plane of the surface contains a vector perpendicular to §'(s). The
curve o is called the striction curve of the surface, and clearly depends only
on the surface, not on the original parameterization. One further alteration
eliminates all trace of the original parameterization—we might as well change s
so that it is the arclength of 8. We thus have the “standard parameterization”

f(s,8) = o(s) +18(s)
Bl=18"1=1, (0',8)=0
[8,0” linearly independent].

[The only thing that might go wrong in all this is that o(s) might be a point
where the original, and hence the new, f is not an immersion. As a matter of
fact (Problem 5), for the tangent developable of ¢, the striction curve is just ¢
itself.] It now turns out (Problem 4) that

—p(s)

= aaE o p=le,80 x 6.

The function p is called the distribution parameter. Since p depends only on s,
we see that K — 0 as we go out along any ruling,

In addition to these general results, which we will put to use somewhat later,
there are a few ruled surfaces of particular interest, two of which we will mention
here, and two of which occur in our next category.

L. Mdibius Strip
Our first example of a ruled surface is the “standard” Mobius strip, a slight
modification of the one given on pg. 1.10,

. s . s . .8
fis,t) = (coss +tcosicoss, sims + ¢ COSE sin s, £ sin —)

. s s . .S
= (coss,sms,0) + ¢ (cos 7 COS S, COS 3 sin s, sin 5) (It] < %)

pl

Computing directly from formulas (A) we find that

2 2

E=%+[l+tcos(%)]— F=0 G=1I
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(the values of F and G should be obvious!). Notice that this surface is not flat,
50 it 15 not the Mobius strip that one makes out of a strip of paper.

A C* flat surface homeomorphic to the Mébius strip can be constructed as
follows. We start with a curve ¢ like the one shown in the first figure below.

The tangent vectors at 4 and B are negatives of each other, and the plane P
in which they lie is the osculating plane of ¢ at these points, so that ¢” lies
In P at A and B. We then consider the portion of the tangent developable
of ¢ which is formed by the positive multiples of the tangent vectors. From this
surface we can cut out a strip, as shown in the second part of the figure, which is
homeomorphic to the Mobius strip. If we choose ¢ so that all ¢*), k > 2 vanish
at A and B, then this surface will be C®. Notice that the resulting picture is a
“back-view” of the Mgbius strip shown above.

In Chapter 5 we will mention a way of constructing an analytic flat Mobius
Strip.
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2. (Right) Helicoud

This surface is generated by a line which moves along the z-axis in such a
way that it remains parallel to the (x, y)-plane, and passes through the points of
a circular helix (in other words, the surface is generated by a line perpendicular
to the z-axis under a “screw” motion). It is thus given by

f(s,t) = (tcoss,tsins,bs), b #0.

The lines ¢ = constant are helices (compare pg. II.32). Computing from (A)
and (B), we find that
fils,t) = (—tsins,t coss,b) f2(s,t) = (coss,sins,0)
fi1(s,t) = (=t coss, —tsin s, 0) fa2(s,8) = (0,0,0)
fi2(s,t) = (—sin s, coss,0)
E=b'+2 F=0, G=1; VEG—F2=b1+7

b
[ =Nn = 0’ Mnm—= ——
/bZ + t2
b2
K=——F—5, =0.
(b2 +12)?
The helices ¢ = constant intersect the rulings s = constant in right angles

(F = 0). They also point in the asymptotic directions {/ = n = 0), so H must
be 0.
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1. QUADRIC SURFACES
These are the surfaces of the form W™1(0), where
W(xy, x2,x3) = Za,-jx,-Xj + Zb,-x,- +c.

Standard arguments (Problem 6) show that, aside from trivial cases, they are
all one of the following (up to rotations and translations); some of them are old
friends of ours.

0. Sphere

This is a special case of the surfaces of the first group, but it surely deserves
special mention. As we know, for the sphere of radius R, the normal map v
is just —1/R tmes the identity (choosing the inward pointing normal, as on

pg. 11.52); every point is umbilic, the principal curvatures are 1/R, and K =
1/R?*, H =1/2R.

|, Ellipsoid

This surface has the equation
x2 22
StEts
The planes perpendicular to an axis intersect the surface in a family of similar
ellipses.

Choosing

1 xZ yZ ZZ
W yYoZ) = | — rey — — 1
(%.2:2) 2(az+b2+c2

Witx, y.2) = > Y W) =
1(x,y,2) = 2 Walx,y,z) = B2 3(x,y,2) = 2
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1/a> 0 0
W= o 1 0
0 0 1/c2

and applying (%) on page 140, we have

1 xZ y2 22
K=?§Z(F+F+F)

Problem 7 casts this into a more useful form, which among other things allows
us to see immediately that the maximum and minimum Gaussian curvatures
occur at the expected places.

Using (D), we find that (x, y,z) is an umbilic if and only if

-2

x/a®> ayja* ay ax @y  ayz
det y/b2 az/bz a> | =0 for all a1,az,a3 with %_4__2_ el =0.
a b2 c?
z/c? a3/t a3
If a > b > ¢ > 0, then there turn out to be exactly four umbilics on M
(Problem 9). If, on the other hand, we are dealing with an ellipse of rotation,
then there will be two whole circles of umbilics.

2. Elliptic Hyperbolowd (of one sheet)
The equation now is
X2 2 2
atpTaTh
Planes perpendicular to the z-axis intersect the surface in similar ellipses, while
planes perpendicular to the other axes intersect it in hyperbolas. When a = b,
it may be obtained by revolving a hyperbola around the z-axis (hyperboloid of

revolution).
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This surface is a ruled surface! In fact, it is doubly ruled: it may be parameter-
ized as
S(s,1) = (acoss,bsins,0) +t(—asins, b cos s,¢)

or Sf(s,t) = (acoss,bsins,0) +t(asins, —b cos 8, ¢).

In each case the rulings pass through the ellipse x?/a? + y2/b? = 1,z =0
and are perpendicular to the radius vector to that point. For a hyperboloid of

revolution, it is possible to demonstrate this ruling dramatically with apparatus
like that pictured below. (The general elliptic hyperboloid must then also be
ruled, since it is the image of an hyperboloid of revolution under a linear map

) &

:T? r
To compute K, we choose a W similar to that for the ellipsoid, and obtain

X y z

= — W, = - — —
Wi e 2= 33 W3 2
1/a> 0 0
(Wij) = 0 1/b2 0

Then K turns out to be precisely

1 N2y 22
K:m(F“LF“LF)

Since K is negative, there are, of course, no umbilics.
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3. Elliptic Hyperboloid (of two sheets)
The equation 1s
x2 2 2
SN
a? b2 ?
It is still true that planes perpendicular to the z-axis intersect the surface in
ellipses (when they intersect it at all), while planes perpendicular to the other

axes intersect it in hyperbolas. However, the surface looks quite different.

—

To compute K we choose a W which differs only by a constant from the W
for the elliptic hyperboloid of one sheet. The computations are then precisely
the same, except that the factor x?/a® + y2/b? — z2/c? which appears is now
equal to —1. So we get

1 x2 2 22
K=m(;+ﬁ+?)

Again there are four umbilics (Problem 9).

4. Elliptic Paraboloid
The equation is simply

-2

X2 g2

Planes perpendicular to the z-axis intersect the surface in similar ellipses. Planes
perpendicular to the other axes intersect it in parabolas. When a = b we have
a paraboloid of revolution.
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Computations are especially simple:

1 x2 2
W(x,y,z)= (Z"‘y_—z)

2 b2
X y 1
W, = — W, = =— Wi=——
T2 2T p2 3 2
1/a? 0 0
Wip=| o 182 o0
0 0 0
IR E A
4a?b2 \a* b 4

There are two umbilics (Problem 10).

5. Hyperbolic Paraboloid

Here the equation is

x2 y2

Tar B
Planes perpendicular to the y-axis intersect the surface in parabolas, and planes
perpendicular to the x-axis intersect the surface in parabolas pointing the other
way. Planes perpendicular to the z-axis intersect the surface in hyperbolas point-
ing in one direction when the plane lies above the (x, y)-plane, and in the other
direction when the plane lies below the (x, y)-plane; the (x, y)-plane itself in-
tersects the surface in two intersecting straight lines.

This surface is also doubly ruled. It may be parameterized as
S(s,1) = (as,0,5%) + t(a, b, 25) or f(s,1) = (as,0,5%) + t(a,—b, 2s).

[Itis a classical result that all doubly ruled surfaces with K < 0 are quadratic.
An elementary, somewhat unsatisfying proof is given in Problem 11; a nice proof
can be given (Problem 4-16) by means of affine surface theory, which shouldn’t
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be too surprising, since the property of being doubly ruled is invariant under

affine maps.]
For computations we choose

¥y 1
le'a_z Wz_-z)—z W3=—§
1/a* 0 0
Wiy=| 0o —1/6* 0
0 0 0
2 -2

IV. SURFACES OF REVOLUTION

These are the surfaces obtained by starting with a curve (the profile curve),
lying in the right half of the (x, z)-plane, and revolving it about the z-axis. If

the curve intersects the z-axis, it must do so at a right angle. As illustrated in

the figure at the top of the next page, the surface is parameterized by

f(s.t) = (c1(s) cost, cr(s)smnt, c2(5)).

The curves § = constant are called parallels and the curves 1 = constant are

called meridians.
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[N}

fls,0)

c(s)hn (x,z)-plane

c2(s)

(c1(s) cost,cy(s)sint,0)

By (A) we compute

fi = (ci’ cost, ¢ sint, ¢3) f> = (—cysint, ¢j cost, 0)

it = (1" cost, e1"sint, ¢ fr2 = (—cj cost, —cysint, 0)
fi2 = (—ci'sint, ¢;' cost, 0)
M E=(@)+()? F=0 G=¢

VEG — F2 = 1 /(c1')? + (¢2')?

ci'ca — e’y ci1ca’

= —=—° m=0 R . —
Vi) + (c2')? Vet +(er')?

Since F = m = 0, the tangent vectors of parallels and meridians point in the
directions of the principal curvatures; we can use equations (G) to find directly

that the principal curvatures are

. / (,1/(,2// _ 62/(’1//
meridian — & — 3/2
E (a9 + (eh?])Y
X n o’
parallel = = =
@) G o (@) + ()"
(e — e’y

K = kmeridian : kparallel = ‘ [(()1,)2 + ((,2/)2]2

1

H=-
2

(k meridian kparallel) .
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It will be useful for us to consider the special case where c(s) = (g(s),s). Then
we find that

"

K eridian = &
meridian —
l + n2 3/2
[+ (")) el = (80529
1 (The profile curve
g[l + (g")?)"/? is the graph of a
_g" function of z in

K = m the (z, x)-plane.)
g

14 () —gg”
©2g[1+ (g)2)?

k parallel =

It is also useful to consider the canonical parameterization, where Ic']2 = (a')?+
(c2")? = 1. Then also ¢;'c}” + ¢2'¢c2” = 0, so we find

E=1 F=0 G =¢?

K= Qe —a'a”) _ a'laa") —a’@)?

Ct 1
) _a'(=¢/al”) = "1 = (a1)]
Cl// Cl
"o

It is interesting to note that we can obtain all these results in a purely geo-
metric way without any calculations. We first observe that the normals to
the surface along the profile curve ¢ lie in the (x,z)-plane. This means that

-~

the derivative of v along the profile curve also lies in the (x,z)-plane. Since
it must also be tangent to the surface, it is a multiple of ¢’. Thus ¢’ is one
eigenvector for —dv. The corresponding eigenvalue is also easy to find. We
notice first that our choice of N as (f; x f2)/|fi X f2| makes v inward pointing;
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so along ¢, the vector v is just the normal n of ¢. Therefore —dv(c’) = —n' =
k - ¢" (from the Serret-Frenet formulas for plane curves), and the eigenvalue is
just the curvature of ¢. Comparing the formula for & merigian 1n (2) with the
formula on pg I1.8, we see that this is precisely what we have obtained in the
calculations.

We next consider the outward pointing normal —v along a parallel. This
makes a constant angle 6 with the z-axis, so in §? it traces out a circle, of radius
sin 0, consisting ofvecztors with 3" component constant. So the derivative of —v

Z .
sin 6

will be a vector with 3™ component 0, and perpendicular to the radius vector.
It is therefore a multiple of the tangent vector of the parallel. If we parameterize
our parallel so that we go once around in time 27, then its tangent vector has
length ¢ = radius of the parallel. In the same time, the vector —v goes once
around a circle of radius sin 6, so its tangent vector has length sin 6. This shows
that the corresponding eigenvalue 1s % sin €, which 1s precisely what the formula
for kparallel In (2) gives.

Now let us take some particular cases. We begin with the most familiar
example (after cylinders, cones, and spheres).

1. Torus
We rotate a circle of radius r around the z-axis so that its center traces out
a circle of radius R. Measuring angles 6 around the little circle clockwise from

y

ol
p4
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the z-axis, we see that the principal curvatures are:

1 ) .
— = curvature of circle of radius r
,

sin @

Rtrsnd since a =R +rsind.

In particular, as suspected, K > 0 on the outer half of the torus, and K <0 on

the inner half. Notice that the principal curvatures can never be equal, so there
are no umbilics.

2. Catenoid

This surface, which we have already met in Volume I, Chapter 9, but not yet
been formally introduced to, is obtained by revolving a catenary, with equation
x = acosh(z/a) = g(2), around the z-axis.

z
x =acosh =
4 —-Z
coshz = e te
2
Since
el —et . e +e7 %
cosh’' = = — = sinh z, cosh” - = % = cosh =
2z 2z 2z
e“—2+e 1 e

14+ (cosh’z)> =1+ T et + = (cosh 2)?,

4 2772
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formulas (3) give us

—_— COS

z
hg !
a —
K meridian = 3/2 5z
[coshz ] a cosh 7

|

k llel = =
parallel 172
z z 2z
a cosh = | cosh? —] a cosh a
a a
—1
H=0, K = Z
a? cosh* =

Clearly —1/a*> < K < 0, with K = —1/a? on the inner circle z = 0, and K — 0
as z — Fo0.

It is also useful to find the canonical parameterization for the catenoid; we
take the case @ = 1. For ¢(u) = (cosh u, u), we have

u u
length of ¢ from 0 tou = f 1+ (cosh’ v)2dv = f coshvdv = sinh u,
0 0

so we want to take the curve
y(s) = c(sinh ™' (s)) = (cosh(sinh_l(s)), sinh_l(s))
= (V1+s2, sinh™'(s))  [see Problem 1.9-20(d)].
We then have, by formulas (4),
E=1 F=0 G=1+s"

—1
T (14 s2)?

3. Rotation Surfaces of Constant Curvature
We consider surfaces of revolution with canonical parameterization

f(s,t) = (g(s) cost, g(s)sint, h(s)), (g)? + (W) =1,

and among these seek the ones with constant K. According to equations (4) we
have
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Case I. K =0

Then g(s) = as + b. If ¢ # 0, then we can assume that b = 0, since this
merely amounts to renaming the parameter s. To have (g)? + (h')? = 1 we
take

g(s) =as . {g(s):O-s+b

h(s):v/s\/l——aza't=:|:s\/1—a2 his) =s
0

(changing # by a constant merely amounts to translating the profile curve along
the z-axis); clearly we must have |¢] < 1. For ¢ = 0 we obtain a cylinder, for
la] =1 a plane, and for 0 < |¢} < 1 a cone.

y
x
V1—a?
slope p

O<a<

Cuase 2. K >0
For simplicity, we take the case K = 1. We have to find g satisfying g”"+g = 0.
The general solution, g(s) = «j cos s + a3 sin s, can also be written

g(s) = acos(s + b).
We can always assume b = 0, and we take
g(s) =acoss

h(s)=j:/ V1—g(t)? dt =j:/ V1 —a?sin?t di.
0 0

For ¢ = 1 we obtain the sphere of radus 1.

For ¢ < 1, the integrand in the expression for / is always real, and the only
restriction on our formulas is that g(s) must be > 0. We can take 0 < s < 7/2;
the resulting profile curve can be expressed in terms of elliptic integrals.
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z

N .
7

For ¢ > 1, we must restrict s to 0 < s < arcsin 1/a for the integrand to be
real. At the endpoint of the interval, &’ is 0, so the profile curve has horizontal
tangents; once again, elliptic integrals are involved.

o

3]

Case 3. K <0
We take the case K = —1. The gereral solution of g’ — g =0is

g(s) = ae® + be™*.

Suppose first that one of «, b is 0. We can assume that b = 0, since chang-
ing s to —s interchanges ¢ and b. We might as well assume ¢ > 0, since
changing a to —a just changes the profile curve to its mirror image. Finally, we
can assume ¢ = 1, since changing s to s + sop multiplies ¢ by ¢*°. So we take

gs)y=¢*

his) = if V1—e dt
0

we clearly need ¢ < 1, and therefore g(s) < 1. The resulting surface is called
a pseudosphere. Its profile curve was known to mathematicians long before the
advent of differential geometry. Since s is the parameterization by arclength,
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the angle ¢ in the picture below satisfies
g'(s)
VIg®P + [ ()2

sing = cosf = =g'(s) =¢€".

lope —
TP )
So AB has constant length
s
AF=%9 _¢
sing e’

If one started at (0, 0) and walked along the y-axis pulling a wagon that started
at (1,0) and had a handle of length 1, then the wagon would follow this curve,
which is therefore called a tractrix (Latin: trahere, tractum to draw). The upper
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half of the tractrix is the graph of the function
log x

f(x) = V1 —e di

X 1
=/ vV1—u?-—du
i U
2 =y
=+v1—x%—cosh™ —.
X

Now suppose that a@,b # 0. Since changing s to s + so multiplies @ and b by
different constants, we can assume that either a = —b or a = b.

In the case a = —b we can assume a > 0 (by changing s to —s and thereby
interchanging a and b). So we take

g(s) =a(e® —e™*) = 2asinhs

h(s) = :I:/ Vv 1 —4da? cosh?t dr;
0

we need 0 < 2a < 1 and 1 < coshs < 1/2a, so that 0 < s < cosh™ 1/2a and

0 < g(s) < V1 —4a?. These functions can also be expressed in terms of elliptic
integrals.

In case a = b, we can assume both are positive, since changing the sign of
both changes the profile curve to its mirror image. So we take

g(s) =2acoshs

his) = :I:/ V1 —4a?sinh?r dt:
0
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we need |sinhs| < 1/2a and thus 2a < g(s) < v/ 1+ 4d?. Elliptic integrals are
again required.

8]

These results about surfaces of revolution may be compared with the remarks
made by Riemann in section I1.5 of his Inaugural Lecture (pg. 11.159).

4. A Classical Counterexample
Consider the surface of revolution

f(s,t) = (ssint, scost, logs).

Formulas (1) and (2) give
E=14+= F=0 G=1
s
—1/s? 1/s

1 132 11172
14+ — s+ —=
1+ B

-1
K=——3.
(1 +s2)2

k meridian —
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On the other hand, interchanging the role of s and ¢ in the parameterization
of the helicoid (page 150), we see that g(s,t) = (scost, ssint, t) has

E =1 F=0 G=1+S2
—1
K=——.
(1 +s2)2

Consequently, the map f(s,f) > g(s,!) preserves K, but is not an isometry;
in fact, there is clearly no local 1sometry between the two surfaces, since the
s-parameters would have to correspond to preserve K, and then E would not
be preserved.

V. MINIMAL SURFACES

A whole branch of mathematics is devoted to the study of surfaces with mean
curvature H = 0. As we shall show in Chapter 9, this condition is precisely the
one which must be satisfied by a surface which is a critical point for the area
function among all surfaces with the same boundary curve ¢. In particular, if a

surface has minimum area among those with ¢ as boundary, then it must satisfy
the condition H = 0. For this reason, surfaces with mean curvature H = 0 are
called minimal.

We have already met two minimal surfaces in our survey, the helicoid and the
catenoid. They, in fact, were the first two non-planar minimal surfaces to be
discovered (by Meusnier), and we are led to them directly if we seek minimal
surfaces among other known classes of surfaces.
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Let us consider first the surfaces of revolution. If our profile curve is a straight
line perpendicular to the z-axis, we obtain a plane. Otherwise, some portion
of the curve can be represented by c(s) = (g(s),5). Using formulas (3) on

Ind 7
p4

== Ak

page 158, we find that H = 0 when
1+ (W)* = hh" =0.

This is precisely the equation we obtained on pg. . 321, when we were actually
finding the minimum area of a surface of revolution. We found there that the

solutions are
z+b

g(z) = acosh .
a

This result applies only to a portion of the surface, but a simple least upper

bound argument shows that if a connected profile curve has this form some-

where, then it must have it everywhere (and in particular cannot also contain

part of a line perpendicular to the z-axis). We have thus shown that:
Any connected minimal surface of revolution is part of a plane or a calenowd.

We consider next the ruled surface

S(s.0) = a(s) +18(s)
18] = 18"l = 1, (0',8) =0
[8, 0" linearly independent].

Then we have

fi=0 +18 fr=8
f]] =0//+t8// f22=0
Ju=4¢

F=(,0) G=1 leeW=VEG-F?

1 0// +t8// l 8/
I = W det| o' +1t8 m = W det| o’ + 18 n=0.
8 8
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So equations (B) show that H = 0 when

8/ 0//+t8//
0=-2(5,0')det| o' +1t8 | + det| o'+ |.
) )

Using multilinearity of det as a function of its rows, and noting that the coeffi-
cient of each power of ¢ must vanish, we obtain

8/ 0// 8// 8//
) 8,0 det[o’|=0 (@ det{ & J+det|o’|=0  (3) det| & }=0.
5 5 5 5

Equation (3) shows that §” is a linear combination of § and §’. But we also have
(8,8 =1 = (§',6"Y=0
(8,8) =1 = (6,8 =0 = (§',8)+ (5,8 =0 = (8,8") = —1,
which shows that s — s
This means that —§ is the normal n of the curve 8, and that the curvature of §
isk=1 Also,b=t xn=4§ x -4, so
b'=—(8x8) =—(8x8§)—(8"x8 =0.
Thus 7 = 0, and § is a plane curve. Since it lies in S, and has curvature 1, it
must be a circle of radius 1. We can assume therefore that
8(s) = (coss,sin s, 0).

Now in equation (2), the second deferminant is already 0, so we find that ¢”
is a linear combination of 8,8, which means that ¢” lies in the (x, y)-plane.
So ¢ must be of the form

0(s) = (a(s), B(s),bs +a) = 0'(s) = (a'(s), B'(5),b).
We might as well assume that ¢ = 0, since this just amounts to a translation
along the z-axis.

Now consider equation (1), which says that a certain product is 0. If the second
factor is 0 for some sg, then o'(s¢) must be a linear combination of 8(sg), 8’ (o),
so b = 0. In this case, all rulings o(s) 4 ¢8(s) lie in a plane, and our surface is
just the plane. If b # 0, then for all s we must have

0 = (8(s),0'(s)) = a'(s)coss + B/(s)sins
0= (8'(s),0'(s)) = —a'(s)sins + B'(s) coss.
Soa’ = ' =0, ie, a and B are constants, and our surface is given by
f(s,t) = (ax+tcoss, B+tsins, bs).

A translation in the (x, y)-plane changes « and B to 0, and we obtamn the
helicoid.
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Our analysis has left a few points in doubt, because the standard parameter-
ization with which we began is possible only when the directions of the rulings
of our ruled surface are always changing. When the directions of the rulings are
never changing we obtain a generalized cylinder, which is minimal only if it is a
plane. As before, a least upper bound argument shows that if §" # 0 on some
interval, so that we do have a helicoid on this interval, then §’ # 0 everywhere.
We have thus shown that:

Any connected minimal ruled surface is part of a plane or a helicoid.

It 1s, of course, not particularly surprising that each of these famihies of surfaces
contains only one non-planar minimal surface. But 1t is rather surprising that
these two surfaces, the catenoid and the helicoid, are locally isometric. To prove this,
we merely recall (page 167) that

the helicoid f(s,t) = (scost,ssint,t) has E=1 F=0 G=1 + 5%,
while (page 16])
the catenoid g(s,t) = (\/l-l-—s2 cost, \/l-l-—s2 sint, sinh_l(s)) also has
E=1 F=0 G=1+s%
The isometry, taking f'(s,?) to g(s, ), carries

rulings of the helicoid to menidians of the catenoid (¢t constant)
helices of the helicoid to parallels of the catenoid (s # 0 constant)
z-axts of the helicoid to center circle of the catenod (s = 0).

s
D
H

R

N
%o
PO
™
N

S
SO
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Actually, we can do a lot better than this: it is possible to deform one of these
surfaces into the other by means of a 1-parameter family of isometric surfaces:

Although we could write down an explicit formula for this 1-parameter family,
it will come out very naturally in Chapter 9.

The example of the helicoid and catenoid also shows that two immersions,
/> [+ R - R? with the same gij (and therefore also the same K) as well as the
same H need not differ by a Euclidean motion of R?®—one needs to know the
l;j themselves, not just trace(/;;) and det(/;;) [or equivalently the eigenvalues of
(/i)], in order to determine the surface.

The first minimal surface to be discovered after the catenoid and helicoid was

L. Scherk’s Minimal Surface
This is the surface M defined by

e?cosx = cos ).
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If we define W: R3 — R by
Wi(x,y,z) =e’cosx —cos y,
then the three vectors
Wi(x,y,z) = —e’sinx Wa(x,y,z) =siny Wi(x,y,z) = e®cosx
are never all 0, so W™1(0) is a surface, which is orientable since it has a well-
defined normal, as on page 138. The lines x = /2 4+ mm and y = n/2 + mmn,

for m € Z, divide R? into squares, and those where cosxcosy > 0 form a
checkerboard pattern. Since e > 0, there are clearly no points of M over the

2] 1 1 E 1 1 1 1 ] 1]
IR A T e
SR e S I 2
L ' T 1 | 1] E il [ 1
B A T
1 [ 1 ] ] ¥ 1 (] ) 13
1. P-Q4, N-KB3 S TR T x
Rkl sl ol Sl il 1 Tptialiniiadial o ::5c+ it ASwdiaiiadt Biiatiniiad 7
2. N-Q2, P-K4 T
———_‘1_‘__:_-_';‘__ ot o kLo B W
3. PxP, N-N5 R i Bl e R A 2
1 8 1 E 1 1 [} + ]
4. P-KR3, N-K6 B SO 5 . TR 2 -
¥ 1 ] 1 [} 1 L; ] 1 1+
. | ' ¥ 1 1 1 € 1 ¥ 1
5. Resign SN U U S O ) S| T
1 ) 1 L3 1 " 1 ¥ ] ]
1 1 1 1 1 I 1 ¥ 1 |
1 ¥ 1 l ¥ | 1 ] 1 ]
_3r _z z 3 5z Iz 9=
2 2 2 2 2 2 2

“white” squares. Over the vertices of the squares, where cosx = cos y = 0, we
have perpendicular lines, since z can have any value. Over the “black” squares,
we can solve explicitly for z,
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The surface is made up of infinitely many of these structural units.

The small portion of the surface pictured above is simply homeomorphic
to a cylinder (with a very floppy side), and there is an obvious closed curve ¢
connecting the four saddle points which represents a non-trivial element of the
fundamental group. Moreover, this curve ¢ does not disconnect the (complete)
surface. To see this, note that just as the vertical line L; can be connected to
the line L, by a curve lying in the two adjacent units which share the common
edge L', so lines L3 and L4 can be connected by a curve lying in two adjacent
units (not drawn in the picture). But L3 and L4 can be connected to points
which lie on (apparently) opposite sides of the curve c.

Similarly, we easily see that the surface actually has “infinite genus” (infinitely
many closed curves may be removed from it without disconnecting it). It also
has only one end. But it is known that two orientable surfaces with the same
genus and the same space of ends are homeomorphic, so our surface must be
homeomorphic to surface (A4) in Problem 1.1-20.
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2. Enneper’s Minimal Surface
This surface is parameterized by

u3 uv2 3 2 2 v

2
u v u
f‘“’”>—(5‘z+7’ te T 7‘7)-

A computation from equations (A) and (B) shows that H = 0. Of course, at
present it 1s pretty hard to see how any one ever thought of this example, but in
Chapter 9 we will see that in a certain sense it is the simplest minimal surface.

In the figure below, showing the image of f on [-2.5,2.5] x [-2.5,2.5], the
top portion is seen almost completely from the side, while the bottom portion

]

1s seen almost head on. The surface is taken into itself by the map

(.\', ¥, :) = (.}v’ X, _:):

with the line 4 B corresponding to the line CD.

Since the surface is the graph of a function, it is merely an immersed plane.
and its structure can perhaps be better understood from the series of pictures
on the next page, which show a saddle surface being deformed into a surface
of the same type as Enneper’s surface.
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ADDENDUM
ENVELOPES OF 1I-PARAMETER FAMILIES OF PLANES

In classical differential geometry, a central role was played by the notion
of the envelope of a family of curves or surfaces. A careful treatment of this
topic involves many delicate points, which to be sure were rather indelicately
handled by classical geometers. However, the study of envelopes played such an
important role in the evolution of the concept of a connection that a sketch of
its essential features seems in order; the ideas developed here will also be used
on a couple of later occasions.

Consider first a 1-parameter family @ of curves in the plane, given by a(u) =
t — a(u,t) for some C* function a: [0,1] x [0,1] — R2. An envelope of this
family is defined to be a curve ¢ which is not a member of this family but which
is tangent to some member of the family at every point. Unfortunately, it often

> S —
N ‘"“v"@v‘v’é""iil’i‘\ﬁg,)’ b
‘l‘ “‘Q‘Q““‘l :L\’\.\})’}' LU 4

turns out that the envelope of a perfectly nmice family of curves has a cusp or
something worse; but for the time being we won’t worry too much about this.

envelope of normals
to an ellipse (= locus
of centers of the
osculating circles)
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The classical way of finding the envelope of a was very geometric. For each u,
we let ¢(u) be the limit, as ¢ — 0, of the intersection of &(«) and &(u + ¢): the

envelope consists of the “intersections of members of the family with another
member infinitely close to it”. The picture below shows that this idea can run
into some serious difficulties. Nevertheless, it often works out rather well in

= )
s

particular cases, and even in the general case it leads us to the proper analytic
condition, when we argue as follows.

Let us consider first the case where our curves @(u) are all expressed as the
graphs of functions; thus there is a function (u, x) f(u, x) such that a(u, t) =
(¢, f(u,t)). Suppose that the curve @(u) intersects the curve a(u +h) at the point

au+h)

a(u)
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(xn, f(u,xp)) = (xp, fu+ h,xp)).
Then we have
0= f(u+h’xh) - f(u,Xh)
h .

Assuming that xj approaches a number x(u) as # — 0, we find that x(#) must
be a point for which

() Dy f (u, x()) = 0.
If we find the points x(u) for all u, then the envelope should be the curve
consisting of all points (x(u), f(u, x(u))).

If we are given a general family &, not necessarily expressed as graphs of

functions, then we can introduce the function f in two steps. We first determine
t(u, x) so that

() ol (u, 1 (u, x)) = x,
and then define
(2) fu,x) = a®(u,t(u, x)).
Then equation () becomes
3) 0 = Dyo*(u, t(u, x)) + Daa®(u,t(u, X)) - Dyt (u, x),
while equation (1) gives
Dyt (u,t(u, X)) + Dya* (u, t(u, x)) - Dyt(u, x) =0,

1
Do ).

Dyt(u,x) =— Dyl

Substituting this into (3), we obtain
[Dlo{2 - Dyl — Dlo{1 . Dzaz](u,t(u,x)) =0.

Thus we find that the envelope should consist of points a(u, ) where (u,¢)
satisfies

(%) det(Dja’ (u, 1)) = 0.
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Now even without resorting to the motivating geometric construction, it is
clear that if there 1s an envelope of the family @, then it must be a subset of the
points a(u,t) for which (u,?) satisfies (x*). For, if the determinant in (x#) is non-
zero, then & is an immersion at (u,t), and the curves &(u) form a foliation of
a neighborhood of a(u,?); consequently, the only curve through a(u,¢) which

=

is tangent to some curve of the family at each point is @(u) itself, which means
that «(u, ) cannot be a point of an envelope.

W

Similar considerations will apply to 1-parameter families of surfaces in space.
In particular, the geometric construction will be found quite useful when we
consider 1-parameter families of planes. A plane P can be described as

{x e R aixi + arxs + azxs = {a,x) =d}

for some number d, and some (ay, a3, a3) # 0, which we might as well assume is
a unit vector. (Choosing the point (x1, X2, x3) € P closest to 0, and noting that it
must be a multiple of a, we see that d is just the distance from 0 to P, provided
that a is picked so that it points in the direction of points further from 0).
So a l-parameter family of planes amounts to two functions a: R — § 2 and
d: R — R. Obviously if @’ = 0, so that @ is constant, then we obtain a family
of parallel planes, and there is no envelope. Let us assume that, in fact, 4’ is
never 0. Then any two nearby planes, corresponding to ¥ < v, must intersect in
a straight line, and all x on this line satisfy

Y aiw)x; —dw) =) ai(v)xi — d(v) =0.
Applying Rolle’s Theorem to
st Y aiu+so—u)x; —dw+sfv—u)  on[01],
we find that |
(1) D@ ®xi—d'§) =0

for some & (depending on x) between u and v.
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It follows that as v — u, this line approaches the line satisfying

(au),x) =d(u)
(%) , o
(@' (u),x) =d'(u)

(note that @ € S? implies that ¢’ is perpendicular to a, so the planes given by
these two equations are not parallel).

The line determined by (x) is called the characteristic line of the plane deter-
mined by u; its direction is @ (u) x a’(u). If (axa’)’ =0, so that all characteristic
lines are parallel, then the envelope will be the generahzed cylinder formed by
all these characteristic lines, provided this actually exists (it could happen, for
example, that all characteristic lines are the same, in which case no envelope
would exist). Let us assume that, in fact, (¢ x a’)’ is never 0. Then any three
nearby planes, corresponding to ¥ < v < w, must have linearly independent
aiu),a(v),a(w), so the planes corresponding to u, v, w must intersect at a point
(x1,x2,x3). This point must satisfy (1) and an analogous condition for v, w:

Y ai'E)xi —d'E) =0
for some é between v and w.

Arguing as before, we see that
Y a"(mxi —d"()) =0
i

for some 1 between & and E.

It follows that as v, w — u, this point approaches the point ¢(u) satistying

(a(u),c(u)) = d(u)
(%%) (@), cu)) =d'(u)
(@ (W), cu)) =d"(u).
The point ¢(u) determined by (%) 1s called the characteristic point of the
plane determined by u. and lies on its characteristic line. It is possible that
¢’ =0, so that ¢ is a point. In this case, the envelope is the generalized cone

formed by all the characteristic lines with ¢ as vertex. Let us assume that, in
fact, ¢’ exists and is nerer 0. Differentiating the first two equations of (xx) gives

(a' (). c(u)) + (a(u), ¢’ (u)) = d' (). hence (2) (a(u).c'(u)) =0
(a" (). c(u)) + (a’(u). ' (u)) = d"(u), hence (3) (a’(u).c'(u)) = 0.
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Differentiating (2) then gives
(@ ), ' () + {au),c"(u)) =0,
which together with (3) gives
(4) (a(u),c"(u)) = 0.
We thus have:

c(u) 1s the characteristic point of the plane determined by u
¢'(u) has the same direction as the characteristic line (%)
[by (2) and (3)]
¢ (u) is in a plane parallel to the plane determined by u

[by (4)].

So the plane determined by u is the osculating plane of ¢, and the tangent developable of ¢
is the envelope of the famaly. Each plane of the family is tangent to this developable
along the points where it intersects it, namely along its characteristic line. (For
all this to work, of course, we need ¢” to be non-zero.)

To sum things up, a I-parameter family of planes “in general” has an enve-
lope, which is either a generalized cylinder, a generalized cone, or the tangent
developable of a curve. This well-known fact from classical differential geome-
try was precisely what gave Levi-Civita the clue for defining parallel translation
in a Riemannian-manifold. He first observed that since generalized cylinders,
generalized cones, and tangent developables are locally 1sometric to the plane,
it makes sense to talk about parallel vector fields in these surfaces—they are just
the images, under the local isometry, of parallel vector fields in the plane.

Now suppose that we are given a curve ¢ on an arbitrary surface M. Consider
the 1-parameter family of planes formed by the tangent planes Mc(,). This
family “generally speaking” has an envelope N, which is a generalized cylinder
or cone, or the tangent developable to some (other) curve; and the tangent space
of N is the same as that of M all along the curve ¢. So we can define a vector
field V, to be parallel along ¢ in M if it is parallel along ¢ in N. Once Levi-
Civita had this definition of parallel vector fields along a curve ¢ in M it was
not hard to derive the usual equation for it, in terms of the Christoffel symbols.
This equation shows that parallelism does not depend on the imbedding, and
can be used to define parallel vector fields along a curve in any Riemannian
manifold, of any dimension.
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PROBLEMS

1. If @1 fi + a2 /2 15 a principal vector, then

(5 )l W)=+

for some A. Write the two equations which this gives, and divide by a; and a,,
respectively, to obtain two expressions for A. From this derive equation (D) (and
then check that it holds also for a; or a; = 0).

2. Let f: V — R be a lhnear function on a (possibly infinite-dimensional)
vector space V.

(a) If vj,;me Vv, then f(l)])vz — f(l)z)l)] € ker f

(b) We can write V = ker / @& W, where W is 1-dimensional.

(¢) If g: V — Risa linear function with ker f C ker g, then g = A f for some
A e R.

d) It g, fi,..., fi: V—> Rand ) ker f; Ckerg, then g =) ; A; f; for some
)»,'ER.

3. Let the Jacobian of f: R" — R¥ have rank k& on f~1(0), so that M =
£71(0) is a submanifold of R” of dimension n — k. Let g: M — R be differ-
entiable, and suppose that g has a maximum at p € M.

(a) M, =(\’_, kerdf!, where df*: R", — R.
(b) If X, € M, then dg(Xp) = 0. Hint: X, = ¢’(0) for some curve ¢ in M.
(c) Use Problem 2 to conclude that there are Aj, ..., A, with

k
Djg = Zx,.D,f" for j=1,...,n.
i=l1

4. (a) For the ruled surface f(s,t) = c¢(s) + t8(s), show that m = (¢/,§ x §),
and
EG— F*=1(8,8)-(c' +18,c +18)— (c'+188)%.

(b) If 6 is the angle between § and ¢’ + ¢4, then
(6,8) - (¢ + 18, ¢" +18') - cos? = (8,c +18)2

So EG — F2 = EGsin*6 = |(¢' +18') x 8.
(c) Tor the standard parameterization, show that

o' x8§={c".8§ x8)-8,
and deduce the formula for K on page 148.
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5. (@) Let a,b € R3 and let v, w € R? be non-parallel vectors. If a + #yv and
b + fyw are the points on the lines {a + tv} and {b + tw} which are closest to
each other, then the line from a+fv to b+, w must be perpendicular to both v
and w. Conclude that
(w,w) - (@ —b,v) — (w,v) - (@a—b,w)

(v, w)? — (w,w) - (v, v)

fo =
(b) Consider the ruled surface c(s) + t8(s) with |8] = 1. If the point P(g) on
page 147 is c(s) + t(e)8(s), then

(cls) — c(s +£),8(5)) — (8(5),8(s +£)) - {c(s) — c(s + &), 8(s + &)
t(e) =
(8(s),8(s + &) — 1
Use L'Hopital’s rule to show that

—({c'(s),8'(s))
(8'(s),8'(s))

(¢) The striction curve of the tangent developable of ¢ is c.

(d) The striction curve of the hyperboloid of revolution

fn )=

is the central circle. (Notice that in each case the tangent vector of the striction
curve at a point is not perpendicular to the generator through that point, even
though the striction curve is the limit of common perpendiculars to generators.)

6. (@) Modify Proposition II.4-14 as follows: If (', )isany (possibly degenerate)
inner product on R”, then there is a basis of R” which is orthogonal for ( , )
and orthonormal with respect to the usual inner product.
(b) Consider a quadric {(xl,xz,x3) : Zij aijxixj + Y ; bixi + ¢ = 0}. Show
that some rotation of R? takes this into a set of the form

{(.n,Xz,.w) : Zi aixi® + Zi Pixi+y = 0}~

(¢) Show that a translation can be used to make Bi = 01if a; # 0. Conclude
that the quadric is an ellipsoid or hyperboloid of one or two sheets (or 9), if all
®; # 0; and it is an elliptic or hyperbolic paraboloid if just one @; = 0. Show
that all other cases are lines, planes, or cylinders over parabolas, ellipses and
hyperbolas.
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7. Let M C R? be a surface with unit normal v: M — R3 We define the
support function /4 of M by

h(p) = —(p,v(p)).

(a) Show that |h(p)| = distance from 0 to M), and that A(p) > 0 if and only if
v(p) points toward the side of M, which contains 0.

(b) For the ellipsoid W~1(0), where W(x, y,z) = 3(x?/a*+ y?/b?+ 2% /c* = 1),
show that

hix,y,z) = 1711 for Z = (W), Wo, W3)(x, ¥, 2).

Conclude that y
=
and locate the points of maximum and minimum curvature.
(c) For the elliptic hyperboloids of one and two sheets, show that
—h* h*
= a2 and = a2

8. Let M C R? be an imbedded surface such that v: M — S? is one-one. For
£ e S? let

respectively.

pE) = h(v'¢)),

where h is the support function of M.
(a) The tangent plane at v='(§) is
3
{x eR ) Ex = p(S)},

j=
SO

3
Y ETHEY = p®).

ji=t

(b) For x € R3 — {0}, let
P()= x| p (i) .
x|
Then

j
i 3 9yt i i
dP(x) af YV N Ix] af x
axt [v (I_Y—| +;A | 0! - Ix1/]1°
Hint: The vanishing of the second term is equivalent to the assertion that

v~ (x/|x])]/0x" is tangent to M at v 1(x/|x]). Note that v='(x/|x]) € M
for all x.
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9. (a) The determinant on page 152 equals
xaraz(c? — b%) + yayaz(@® — ) + zayay (b* — a?).

By sign considerations, show that for a > b > ¢ > 0 there is no umbilic with
y # 0. Then show that there are four umbilics, with coordinates

a2 — b2 1/2 _ b2 — 2\'/2
x = =a PR z = =*+c PR .

(b) Similarly, find the four umbilics on the elliptic hyperboloid of two sheets.

10. Find the umbilics on the elliptic paraboloid by using formulas (E/). [There
are two if @ # b, and one if a = b.]

11. (a) Let M be a doubly ruled non-flat surface, and choose three mutually
skew straight lines Ly, Ly, L3 from the first family of rulings. Show that there
is a unique family of straight lines which intersect all three of L;, L,, L3.

(b) Show that three mutually skew lines L;, L, L3 lie on some quadric, and
conclude that M is this quadric.

12. Let M C R? be a surface with normal map v. Then {p + ev(p) : p € M}
is called a parallel surface M of M. We have a map f: M — M given by
J(p)=p+ev(p)

(a) If X is a tangent vector of M, then f, X = X +edv(X) [identifying tangent
vectors with elements of R?® as usual]. Hence f is an immersion if & # 1/k;
for either principal curvature k; at any point p of M. In particular, if M is
compact, then M is a surface for small enough &. (One could also use Theorem
1.9-20.)

(b) The normal v at p+ev(p) isjust v(p). (One could also use a generalization
of Problem 1.9-28.)

(c) The principal curvatures of M are

ki
1 + ek’
so the Gaussian and mean curvatures of M are
_ K _ H +2¢K
14+eH + 2K 1+eH + &K

(d) If M has constant Gaussian curvature K > 0, then some parallel surface
has constant mean curvature, and if M has constant mean curvature H # 0,
then some parallel surface has constant Gaussian curvature (Bonnet).
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(¢) The volume element dA4 of M is related to the volume element d4 of M
by
[*(dA) = (1+2eH + & K) dA.

(f) I M has mean curvature H = 0, and M is not part of a plane, then the
area of M is smaller than the area of M (Steiner).

13. Let ¢ be an arclength parameterized curve. Recall that the “rectifying
plane” of ¢ is spanned by the tangent t and binomial b. Suppose that the
family of rectifying planes has an envelope M. Show that ¢ is a geodesic on M.

(This is the reason for the word rectifying—the curve ¢ is “made straight” or
“rectified” on M.)



CHAPTER 4
CURVES ON SURFACES

In classical surface theory, a great deal of emphasis was placed on special
curves lying within a surface. In addition, several new invariants can be
defined for a curve ¢ on a surface, apart from the curvature « and torsion 1
which ¢ has as a curve in R®. The total corpus of accumulated results exhibits —
to me at least—the unappealing weightiness of a massive treatise on the conic
sections. So in this chapter we will give the definitions and then explore only
a few of the pertinent results, concentrating on those which are of importance
later on.

Let M C R? be an oriented surface with corresponding unit normal field v,
and let ¢ be an arclength parameterized curve in M. Then we can consider the
normal and tangential components of ¢”(s),

Lc"(s) = (c"(5), v(c(s))) - v(c(s)),
T (s) = %c’(s), by Corollary 1-2.

The normal component L¢”(s) 1s sometimes called the normal curvature vector
of ¢ at s, and
1y kn(s) = {c"(s),v(c(s)))
15 called the normal curvature of ¢ at s; it is the signed length of the normal
curvature vector. As we mentioned in Chapter 1, the tangential component
Tc"(s) is called the geodesic curvature vector. Using the orientation of M we
can assign a sign to the length of this vector. To do this, we first choose the unit
vector u(s) € M., perpendicular to ¢/(s) for which (c¢’(s),u(s)) 1s positively
oriented, so that

c'(s) x u(s) = v(c(s)).

Then we note that
(c"(s),c'(s)) =1 = <£C'(S),C/(S)> =0,
ds

so that Tc¢”(s) = D/ds(c¢’(s)) must be a multiple of u(s). So we can define the
geodesic curvature k. (s) of ¢ at s by
2) Te"(s) = kg(s) - u(s)

= kg(s) - v(c(s)) x c'(s).

187
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Thus kg is the signed length of Tc”. Obviously we have
3) K= Vi + ng.

We will see that «, and kg have quite different properties.
We begin by recalling a few facts from Chapter IL.3B. The equation 0 =
{c'(s), v(c(s))) implies that

dv(c(s)) c
ds

= II(c'(s), ¢'(s)).

(4)  knls) = (c"(5),v(c(s)) = —< '(S)> = —(dv(c'(5)),c"(5))

Thus k,(s) depends only on the direction (c¢'(s) or —c'(s)) of ¢ at s, and otherwise
not on the curve c¢ itself, so we can write k,(X) for a unit vector X. Now
for a given unit vector X € M), there is a natural choice for a curve ¢ in M
with ¢’(0) = X, namely the arclength parameterized curve which is cut out
on M by the plane P containing v(p) and X. Then II(X, X) = «,(X) is

kn(X) > 0 with this
choice of v

the signed curvature of this curve, when (X, v(p)) is chosen as the positive
orientation for P. If k; = kn(X;) are the minimum and maximum of these
signed curvatures, so that X; are eigenvectors of —dv, with eigenvalues k;, then
X; and X; are orthogonal, and if X = (cosf) X + (sinf) X3 is any unit vector,
then (Euler’s Theorem)

(3) in(X) = ky c0s? 6 + k sin? 6.

Equation (4) can just as well be used to relate k, and « for any curve ¢ in M.
Note that the normal n(s) of ¢ at s is in the plane spanned by u(s) and v(c(s)).
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Choosing (u(s), v(c(s))) as the positive orientation of this plane, we define ¢(s)

v(c(s))

u(s)
' c'(s)

to be the oriented angle from n(s) to v(c(s)), so that

(6) n(s) = sin@(s) - u(s) + cosp(s) - v(c(s)).
Then equation (4) implies that
7 kn(s) = I(c'(5),¢'(5)) = Kk(s) - cos P(s),

where k (> 0) is the curvature of ¢. (If k(s) = 0, then n(s) 1s undefined, so
@ (s) 1s also; but equation (7) then holds with any choice of ¢(s).) In particular,
suppose that @ is any plane containing a unit vector X € M,. Let X € M, be
the unit vector perpendicular to X for which (X, X) is positively oriented, and

let N € R%, be a unit vector in Q which is perpendicular to X. Choose (X, N)
as the positive orientation for Q, and let ¢ be the oriented angle from N to v(p)
when (X, v( p)) is chosen as the positive orlentation for the plane perpendicular
to X (changing N to —N reverses the orientation of Q, and changes ¢ to
¢ — 7). If ¢4 is the arclength parameterized curve cut out on M by @, then its
curvature kg 1s given by

(7" K¢ - cOs¢ = k(X).

Equation (7) or (7') is known as Meusnier’s Theorem; another formulation of this
theorem appears in Problem 1.
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We can already state a result which is trivial, but which we will need to refer
to later on.

1. PROPOSITION. Let ¢ be an arclength parameterized curve in a surface
M C R3, with ¢(0) = p, and ¢/(0) = X € M,.

(I) If X is an asymptotic vector, then either «(0) = 0 or n(0) is perpendicular
to v(p).

(2) If X is not an asymptotic vector, then ¢ cannot have curvature 0 at p, nor
can n(0) be perpendicular to v(p); if k,(X) > 0, then the angle between n(0)
and v(p) is acute, and if «,(X) < 0 it is obtuse (in the picture on page 188 the
angle 1s 0).

PROOF. Everything follows from equation (4). #

Note, finally, that if ¢ is not parameterized by arclength, then

(@), ()
(8) kn(1) = TR

since both numerator and denominator are multiplied by the same number
under change of parameter.
Now consider the geodesic curvature kg(s) of ¢ at s, given by equation (2),

Tc"(s) = kg(s) - uls).

Since we also have

" =k -n,

equation (6) immediately implies that
9) Kg =K -sing.

(Again, this equation holds for any choice of ¢ when « = 0.) Unlike «,, the
quantity kg = signed length of D/ds(c'(s)) is intrinsic—it can be calculated
directly from E, F,G using the formula on pg. I1.232; one has to be careful
to parameterize by arclength. On the other hand, k4 (s) does not depend only
on ¢’. Indeed. k, is identically zero if ¢ is a geodesic., and there are geodesics
with arbitrary unit tangent vectors at any point.

Moving frame freaks will be happy to learn that k, and «, arise naturally
when one chooses the appropriate moving frame along ¢. In fact, the original
use of the moving frame was by Darboux, whose monumental 4 volume work on
surfaces includes incredibly detailed investigations of curves on surfaces. Given
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an arclength parameterized curve ¢ in M C R3, we define the Darboux frame
of ¢ on M to be the moving frame

ts) = (s),  uls),  v(s) =t(s) x u(s) = v(c(s)),

as opposed to the Frenet frame t, n, b. The Darboux frame is defined at all points
of ¢, even those where k = 0. Since the Darboux frame is also orthonormal,
the expression for (t,u,v)" is given by a skew-symmetric matrix times (t,u, v):

t' = Kgll + KnV
(10) u = —kgt + TgV
v = —knyt — TgU

From the moving frame point of view, the functions kg, kn, Tg appearing here
are defined by these equations, although it is clear from the first equation that kg
and k, are the same as previously defined. The function 7, is called the geodesic
torsion of ¢. We proceed to indicate how these functions are analyzed using
moving frames.

We first observe that v/(0) depends only on t(0), since

_dv(c(s))

ds $=0

(1D v/ (0) = dv(t(0)).

The third equation in (10) then shows immediately that k, and 7 depend only
on t, so that we can write Kn(X) and 1g(X) for unit vectors X. In fact, if
X € M, is the unit vector perpendicular to X with (X, X) positively oriented,
then equations (10) and (11) give

kn(X) = —{dv(X), X) = II(X, X)

(12 To(X) = —{dv(X), X) =TI(X, X).

Now let X1, X2 € M, be principal directions with (X1, X2) positively oriented,
and let ky,k; be the corresponding principal curvatures. If 0 is the oriented
angle from Xj to a unit vector X € M,, then we have

kn(X) = —(dv(X), X)
= (k1 (cos0) X1 + ka(sin6) X2, (cos) Xy + (sin0) X2)
=k, cos” 0 + k2 sin2 6.

Here we have merely rederived Euler’s Theorem. But exactly the same proce-
dure gives an explicit expression for zg:



192 Chapter 4

2. PROPOSITION. Let X, X, € M, be principal directions, with (Xi, X>)
positively oriented, and let k1, k» be the corresponding principal curvatures at p.
If 6 is the oriented angle from X to a unit vector X € M), then

Tg(X) = (ky — ky)sinf cos 6.
PROOF. Equation (12) gives

7(X) = —(dv(X), X)
= (k1(cos0) X| + ka(sin0) X3, —(sin0) X + (cosB) X>)

= (ky; —k{)sinf cosf. <

Now let ¢ be the oriented angle from n to v, as on page 189, so that
n=sing- -u+cosg-v
b=—cos¢ -u+sing-v,
and hence
u=sin¢- -n—cos¢o-b
v=cos¢ -n+sing-b.
Using the first equation in (10), and the Serret-Frenet formulas, we have
kg = (u,t’) = ((singp)n — (cos )b, kn)
=K -sin¢
Kkn = {v,t') = {(cos ¢)n + (sin ¢)b, kn)
=K -cos¢,

as before. (If k = 0, then ¢ is undefined, but it follows immediately from the
first equation of (10) that also kg = «, = 0.) We still have to make use of the
second equation in (10); it will give us the geometric interpretation of 7,. Now
we have

T = (v,u) = <(Cos ¢)n + (sin ¢)b, dis[(sin ¢)n — (cos ¢>)b]>;

using the Serret-Frenet formulas

d b
d—: =n=—xt+1h and fl_s = —1n,
we end up with
d¢ )
(13) Tg=7+— whenever 7 is defined.

ds’
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In particular we have

3. PROPOSITION.
(a) If X € M, is a unit vector, then 7g(X) is the torsion 7(0) of the geodesic y
with ¥/(0) = X.

(b) The geodesics pointing in a principal direction at a point have torsion 0 at
that point; in particular, all geodesics have torsion 0 at an umbilic.

(c) If X,Y € M) are perpendicular unit vectors, then 7g(X) = —15(Y); thus
orthogonal geodesics through a point have torsions at that point which are
negatives of each other.

Remark: These statements hold only with the additional proviso that the torsions
in question exist. Problem 3 considers what happens otherwise.

PROOF. Part (a) follows from equation (13), since for the geodesic y we have
¢ =0 or ¢ = for all 5. Then parts (b) and (c) follow from Proposition 2. <&

We note in passing that changing the direction of a curve ¢ in M changes t
to —t, and u to —u, but leaves v fixed. So equations (10) show that kg changes
sign, while «, and 7g remain the same. For &, this follows from equation (7),
since n is changed to —n, so ¢ is changed to ¢ — 7. It also follows from the
interpretation of «,(X) as the signed curvature of the curve cut out on M by
the plane P through X and v(p)—normally, reversing the curve would change
the curvature, but in this case, since we change X to —X, we also change the
orientation of P. The fact that T, remains the same follows from the fact that
reversing the direction of a curve does not change its torsion.

One other fact about our new invariants will be of interest. An old theorem
of Laguerre says that, like k, and g, the quantity

de,,(s) — 274(5)kg(s)

also depends only on ¢/(s); using equations (7), (9), and (13), this quantity can
be written in Laguerre’s formulation, involving ¢, k, and 7, as

di(s)

s

cos(s) — (3d#’;ﬁ)- + 2r(s)) Kk(s)sing(s),

s

which makes the result seem even more mysterious. Elie Cartan observed that
just as k, and 7g can be expressed in terms of the tensor 11, this new expression,
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and others like it, can be expressed in terms of the covariant derivatives of 11.
Recall that by Corollary II.6-5 the tensor (Vz,I(X,, Y,) = (VIIN(X,, Yy, Z,)
satisfies

(Vz,I)(X,,Yy) = Z,(I(X, Y)) ~ [[(VZ, X, Y,) — [[(X,, V2, Y),

for all vector fields X, Y, Z extending X, Y,, Z,. This immediately yields

4. PROPOSITION. For all arclength parameterized curves ¢ in M C R? with
the same tangent vector ¢’(0) € M,, the quantity

Kn' () — 274 (5)kg(s)
has the same value at s = 0. The same is true for
1o (8) 4 2[Kkn(s) — H(c(s))]kg (5).

PROOF. Let X be a unit vector field on M which extends t, and let X be
the perpendicular unit vector field with (X, X) positively oriented. Then equa-
tion (2), and the fact that Tc¢”(s) = D/ds(c(s)), shows that

VxX =«kg - X along c,
so by equation (12) we have
IM(Vx X, X) = kg - Tg along c.

Hence

(VxID(X, X) = XAL(X, X)) — 2I[(Vx X, X)

=Kn' — 2KgTy along c.

This shows that the first expression depends only on X = ¢'.
We also have

(Vx X, X) = —(X.VxX) = k.
X
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So we obtain

(VxID(X, ¥) = X(IL(X, X)) - I(Vx X, X) — II(X, Vx X)
=1 — KgH(,Y, X))+« II(X, X)
= 1,/ + {211(X, X) — [IL(X, X) + II(X, X))},

=15 +2(kn — H)xg along c.

We are now ready to consider the three main classes of curves on a surface
M c R?. The curve ¢ is called a line of curvature (or principal curve) if ¢’
always points along a principal direction. This means that

—dv(c)y=k -

for some function k, where k(t) must be a principal curvature at ¢(f). We can
also write this as

—dv(c(1))
dt

dv+ dc_
dt dr

0, 1in the classical manner.

d
=k(z)d—f or

Oddly enough, the last equation has a special name, Rodrigues’ formula. A
more interesting characterization of principal curves can be given in terms of
one of our invariants —the third equation in (10), together with (11), shows that ¢
is a line of curvature if and only if 7 is identically zero.

A curve ¢ in M is called an asymptotic curve if ¢’ always points along an
asymptotic direction. Equation (4) [or (8)] shows that ¢ is an asymptotic curve
if and only if n(¢) is perpendicular to v(c(#)) at all points ¢ where «(r) # 0.
Equivalently, ¢ is an asymptotic curve if and only if n(¢) lies in M) whenever
k(1) # 0, or yet again, if and only if the osculating plane of ¢ at coincides with
M_.(;y whenever k(1) # 0. Equation (4), or the third equation in (10), together
with (11), shows that ¢ is an asymptotic curve if and only if «, 1s identically zero.
Equation (3), or the first equation of (10), then shows that ¢ is an asymptotic
curve if and only if k = 4k, everywhere. Moreover, at points where « # 0, we
then have n = +u, so b = v (the same sign holding in both cases), and the
third equation of (10) shows that T = 17¢; this also follows from equation (13),
since ¢ = /2 or 3m/2 for all 1.

Finally, we have the geodesics, which may be defined as curves ¢ with ¢”(¢)
always perpendicular to Mc(), so that n is perpendicular to M at points where
K # 0, or as curves with kg identically zero.
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To summarize, we have

—dv(cy=k- ¢

7z =0

¢ 15 a line of curvature

11t

when defined, is

€ 1s an asymptotic curve * always tangent to M

the osculating plane, when defined,
<= always coincides with the
tangent plane of M
— Kk, =0
> Kk =*kg
= T = Tg, when 7 is defined

when defined, 1s

¢ 1s a geodesic n, always perpendicular to M

p——1 I(‘g =0
= T = Tg, when 7 is defined.

Since k, and 7z actually depend only on the direction of ¢ at a point, it also
makes sense to talk about a curve ¢ being “asymptotic at ¢” (k,(t) = 0) or “prin-
cipal at t” (74 (¢) = 0); this just means that ¢/(¢) points in an asymptotic direction
or in a principal direction. The equivalences given above for lines of curvature
and asymptotic curves can all be replaced by corresponding equivalences for
curves which are principal at a point or asymptotic at a point; however the
conclusion 7(f) = 7,4(r) does not follow from the mere assumption that ¢ is
asymptotic at ¢.

We will begin our study of these special curves by considering some very
general properties. Taking the asymptotic curves first, we note that they can
exist only in regions where K < 0. This already leads to another simple

5. PROPOSITION. A straight line on a surface is an asymptotic curve, so the
curvature K of the surface satisfies K < 0 along any straight line lying in it. The
curvature is everywhere 0 along the straight line if and only if the normal v is
constant along the line (equivalently: if and only if the tangent space is parallel
along the line).

PROOF. The first assertion follows immediately from equation (4). To prove
the second, let ¢ be any parameterization of the straight line (with ¢/(f) always
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# 0). If the normal is constant along ¢, then

_dv(e(n))
0= dt

and this can happen only if dv has determinant K = 0. Conversely, suppose
K = 0 at each point ¢(t), so that dv has at least one eigenvalue 0 at ¢(). If both
eigenvalues are 0, then certainly dv(c’(tf)) = 0. On the other hand, it is easy
to see that if one eigenvalue is non-zero, then the only asymptotic vectors are
multiples of the eigenvector with eigenvalue 0; in other words, the asymptotic
vector ¢’(f) must satisfy dv(c’(1)) = 0. #

= dv(c'(1)),

Remark: Actually, we have proved a more general result a long time ago (Corol-
lary 1-7), but I thought it would be nice to include the classical proof also. As
before, we can state a slightly more precise result: K = 0 at a point of a straight
line if and only if at this point the normal v has derivative 0 along the line.

As an immediate corollary of Proposition 5, notice that a ruled surface must
have K < 0 everywhere, as we found by computation in Chapter 3. We also
see that K = 0 everywhere on a ruled surface if and only if the normal v is
constant on each generator. On page 146 we found that the tangent plane at
S(s,1) 1s spanned by ¢’(s) + t8'(s) and 8(s). This is independent of ¢ if and
only if 8(s),8'(s), ¢(s) are linearly dependent. Our formula for K on page 147
shows that this is indeed true if and only if K = 0 everywhere. Classically, the
ruled surfaces with K = 0 everywhere, i.e., the ruled surfaces with constant
normals along each generator, were called developable surfaces; in the next
chapter we will consider them in greater detail.

In a small region of a surface where K < 0, we can choose two linearly inde-
pendent asymptotic unit vectors X, Y, at each point p. It is easy to show that
p > Xpand p = Y, will be C*® vector fields; the asymptotic curves are just
the integral curves of these C* vector fields—as one approaches a parabolic
or planar point these integral curves can run together in complicated ways. In
Chapter 2 we pointed out that the asymptotic directions are perpendicular pre-
cisely when the mean curvature H = 0. So on a minimal surface without planar
points, the asymptotic curves are everywhere orthogonal. This is illustrated on
the right helicoid by the rulings and the helices.

In contrast to the asymptotic curves, lines of curvature can exist in regions
of any sort, and it is only umbilics which cause problems. In a small region
free of umbilics, we can choose two linearly independent principal unit vectors
Xp. Yp at each point p. As in the case of asymptotic directions, it is easy to show
that p = X, and p > Y, are C* vector fields (on regions where K < 0 this
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is also a consequence of the fact that the principal directions bisect the asymp-
totic directions); the lines of curvature are the integral curves of these vector
fields. We have already seen that on a torus of revolution, with no umbilics, the

lines of curvature are the parallels and meridians. By contrast, the following
famous picture shows how the lines of curvature behave in a neighborhood of
the umbilic points of an ellipsoid.

Notice that if a surface M has no umbilics, like the torus, then there is a
C® I-dimensional distribution on M —at each point p we choose the set of
all vectors in M, which are eigenvalues for the larger principal curvature, say.
Equivalently, we can pick out two units vectors X,, —X, € Mp. Now we can
construct a 2-fold covering space 7 : M — M by choosing the two points in
7 ~1(p) to correspond to these two vectors. There is then an obvious nowhere
zero vector field X on M (if ¢ € #~!(p) is the point corresponding to X, €
M,. then 7,X; = X,). On the other hand, Theorem 1.11-30 tells us that
for the compact orientable surface M, this can happen only when the Euler
characteristic X(A?) = 0, which implies that x(M) = 0. since X(A?) = 2x(M)
(Problem 7). But the torus is the on/y compact orientable surface with Euler
characteristic = 0 (Problem I.11-2(c)). So any compact surface in R3 not homeomorphic
fo the torus must have at least one umbilic.
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Carathéodory conjectured that every compact convex surface in R3 must have
at least fwo umbilics. Weird as this may seem, there is a natural way to try to
prove it. On any compact surface M C R* with only finitely many umbilics
Pis-.-, Pk we can choose a C*° I-dimensional distribution on M —{py,..., p}.
There 1s a way of defining the index of this distribution at each point p;, in much
the same way that we defined the index of a vector field in Chapter 111, except
that now the index can take on half-integer values. Moreover, it turns out that
the sum of the indices of the distribution is again the Euler characteristic x(M).
The precise definition of the index, and the proof of this result are given in
Addendum 2. Now x(S?) = 2, so Carathéodory’s conjecture could be proved
by showing that at an umbilic the index of our particular distribution cannot be
equal to 2. For the analytic case, Hamburger [l] gave a proof of this which is
183 pages long! Bol [1] then gave a proof that is only 22 pages long, although
1t requires a correction (Klotz [1]). After all this work, it still seems that nothing
1s known when the surface is not analytic, or when it is not convex, even if it
is homeomorphic to §2. I also know of no example where there are only two
umbilics. On compact surfaces of revolution the lines of curvature have only
two singularities, at the two poles, but I suspect that there will always be at least
one whole parallel of umbilics in addition.

Finally, we have the geodesics. They, of course, not onlv exist in any sort
of region, but can be found in any direction. On the other hand, just as the
asymptotic lines intersect orthogonally only when H = 0, orthogonality of two
families of geodesics implies that K = 0; in fact, even more is true:

6. PROPOSITION. If two families of geodesics intersect at a constant angle
everywhere on M, then M is flat.

PROOF. Let X [or Y] be the vector field of unit tangents to the curves of the
first [or second] family. Then X is parallel along the integral curves of X.
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Since the angle between X and Y is constant, and since we are on a surface,
the vector field ¥ must also be parallel along the integral curves of X. The
same argument holds with X and Y interchanged. We therefore have

0=VxyX =VyY =Vy¥Y =VyX =[X,Y].
Consequently,

RX,Y)Y =Vx(VyY) —Vy(VxY) = Vix )Y =0. %

Proposition 6, of course, is not really a theorem about surfaces in R? at all—it
is actually a theorem about the intrinsic geometry of surfaces (I do not know
whether any analogue holds for higher dimensional manifolds).

With this very general discussion of the behavior of our three classes of curves
out of the way, we proceed to the main results about each class. For asymptotic
curves this result is

7. THEOREM (BELTRAMI-ENNEPER). If ¢ is an asymptotic curve with
c(0) = p, and «(0) # 0, then

It = v—-K(p).

Moreover, if K(p) < 0 and the two distinct asymptotic curves through p both
have non-zero curvature at p, then their torsions at p are negatives of each
other.

FIRST (SEMI-) PROOF. Parameterize ¢ by arclength. We know that both t
and n lie in the tangent space of M, and we canlet v =b =t x n. Then the
Serret-Frenet formulas give

—dv(t(s)) = =b'(s) = 1(s) - n(s).

So the matrix of the self-adjoint transformation —dv: M, — M), with respect
to the orthonormal basis t(0), n(0) must be the symmetric matrix

0 7(0)
0 0 )’

with determinant K(p) = —1(0)2. This proof does not give any information
about the sign of 7.
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SECOND PROOF. We know that t = t¢ for the asymptotic curve ¢. So Propo-
sition 2 gives
) 7(0) = (kp — k1) sin 6 cos6,

where 6 is the oriented angle from the principal vector X to X = ¢/(0). On
the other hand, since X is an asymptotic vector, Euler’s formula [equation (5)]

gives

(2) 0=k, cos?0 + kysin® 6,
SO
cos? 6
3 ky = —k .
& 2 : sin® 6

Substituting into (1) we have

29
(0) = -k (EE)SZ— + 1) sin 6 cos @

sin” @

cosf

= _fy 227

' Sing’

while
2(:0520

K(p) =kiky = -k

by (3).
sin® @ ¥ )

Hence 7(0)*> = —K(p) [we divided by sin @, but if sinf = 0, we could instead
solve for ky in terms of kj; alternatively, we can simply note that if sinf =0,
then we have k; = 0 from (2) and 7(0) = 0 from (1)].

Equation (1) also shows that 7(0) changes sign when we change 6 to —6, which
gives the second part of the theorem. ¢

As an example, on the right helicoid we can choose as one family of asymp-
totic curves the helices ¢(s) = (f coss, sins, bs), for fixed . On pg. 11.33 we

found that
b

Y,
in agreement with our formula for K (page 150). In this example the other
family of asymptotic curves are straight lines, with vanishing curvature.

The Beltrami-Enneper theorem raises a natural question, one so natural that
no one since Darboux seems to have considered it. Given a unit vector X' € Mp,

T
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we can consider the line of curvature, the asymptotic line, and the geodesic
which have tangent vector X at p (for simplicity we assume p is not an umbilic
for the case of lines of curvature, and K(p) < 0 for the case of an asymptotic
curve). We know that

the torsion of the asymptotic curve ¢ with ¢'(0) = X is £/ —K(p),
the torsion of the geodesic ¢ with ¢’(0) = X is 7g(X) = II(X, X),
the curvature of the geodesic ¢ with ¢’(0) = X is |k, (X)| = [II(X, X)[;

the first statement is Theorem 7, the second is Proposition 3, and the third
follows from the equation Kn2 + ng = k2, since kg = 0 for a geodesic. Now
it is just as reasonable to ask for the curvature of the asymptotic curve ¢ with
¢'(0) = X. To determine it, we can use one of the invariants of Proposition 4.

We saw, in the proof of that Proposition, that
(VxID(X, X) =k, '(0) — 274 (0)kg (0)

for any curve ¢ with ¢/(0) = X. Now if ¢ is an asymptotic curve, then & is
identically zero, while ¥ = +k, and 7 = 7, so we have

(VxID(X, X) = 05 27(0)« (0)

= F2/—K(p)x(0), by Theorem 7.

Hence, if K(p) # 0, then

the curvature of the asymptotic curve ¢ with ¢’(0) = X is
|(VxID(X, X)|

2 —K(p)

We can also ask for the curvature and torsion of a line of curvature ¢. Here
the situation is somewhat different, simce ¢’(0) = X € M) 1s already essentially
determined. We have 7z = 0 for lines of curvature, so the second invariant of
Proposition 4 gives us the value of [k,(X) — H(p)]«g(0), and hence of «g(0).

Then we can determine k = V> + k,> at 0. To compute the torsion 7(0).
we have to use vet another invariant, involving second derivatives (Problems 5

and 6).

To study lines of curvature, we begin with a pretty, though not very useful,
criterion for such curves.
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8. THEOREM (BONNET). A curve ¢ in M is a line of curvature if and only
if the surface S formed by the normals to the surface along ¢ is flat.

PROOF. The surface S is the ruled surface parameterized by
S5,y = c(s) + rvlc(s)) = c(s) + 18(s), say.

From page 147 we see that S is flat if and only if

0= (c'(s),8(s) x §'(s)) = <c'(s), v(c(s)) x dU(C(S))>,

ds

which is true if and only if dv(c(s))/ds is a multiple of ¢'(s). <

In the case of a surface of revolution, Theorem 8 shows that meridians and
parallels must be lines of curvature, since the corresponding surfaces S are
planes and cones. (Of course, we have already argued in essentially just this
way on pages 158-159.) The next theorem can also be used to find the lines of
curvature on a surface of revolution.

9. THEOREM (TERQUEM-JOACHIMSTHAL). Let ¢ be a curve in M; N
M, which i1s a line of curvature in M,. Then ¢ is a line of curvature in M, if
and only if M) and M> intersect at a constant angle along ¢ (i.e., the normals
of M) and M> have the same angle along c).

PROOF. 1f v; is the unit normal field on M;, then

dvi(c(s))

de(<’(S))>
ds

.vz(<‘(S))> + <V1(C(S)), s

d
- <_k(s)%’ Vz(C(S))> + <V1(<’(s)), %@%

d
E‘(VI(C(S)), va(c(s))) = <
s

since ¢ 1s a line of curvature of M,

dvz(C(S))>

= 0+<V1(<’(S)), s



204 Chapter 4

since ¢ is a curve in M. If ¢ is a line of curvature in M, then the remaining
term is similarly 0, so {(vi(c(s)), v2(c(s))) is constant.

Conversely, if this quantity has derivative 0, then dvy(c(s))/ds 1s perpen-
dicular to vi(c(s)). On the other hand, it is also perpendicular to va(c(s)).
If vi(c(s)) and vy(c(s)) are linearly independent, then dvy(c(s))/ds must be a
multiple of ¢’(s), and consequently ¢ is a line of curvature in M». If vy (c(s)) and
va(c(s)) are not linearly independent, then we must have vi(c(s)) = Fv2(c(s))
for all s (since (v1(c(s)), v2(c(s))) is constant). In this case there is nothing left
to prove. +¢

The one really interesting result about lines of curvature concerns triply
orthogonal systems of surfaces—these are triples of 1-parameter families of sur-
faces with the property that at each point the tangent planes of the surfaces from
any two families are perpendicular. The simplest examples of triply orthogonal
systems are the following:

(1) Each family consists of all the planes that are parallel to one of the co-
ordinate planes.

(2) The first family consists of all planes parallel to the (x, ¥)-plane; the sec-
ond family consists of all the circular cylinders having the z-axis as their
common axis; the third family consists of all planes that pass through the
Z-axis.

v L1

L~

(3) The first family consists of all the concentric spheres around the point 0;
the second family consists of all planes that pass through the z-axis; the
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third family consists of cones, each cone being formed by the all the lines
through 0 that make some fixed angle with the z-axis.

The one other, less trivial, standard example is formed by the set of all surfaces
satisfying the equation
2 2 2

* Y o 2 _ 2 _ 2
() g(k)zaz—k+b2—k+c2—k_l’ 0<a®<b><c.

For A < a2 we obtain ellipsoids, for a2 < A < b2 hyperboloids of one sheet, and
for b2 < A < ¢? hyperboloids of two sheets. For any (x, y, z) with x, v,z # 0,
the function A + g(A) — 1 is continuous except at a?,b?, c?; it clearly jumps
from +00 to —0c as we pass from the left of one of these points to the right of

it, and g(A) — 1 = —1 as A > —oc. Consequently, g(2) — 1 must be 0 for at

a? ' p2 o2 A-axis

g(A) =1

least one A; < a2, one A, with a2 < Ay < b?, and one A3 with b? < A3y < 2.
b 2 bl
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There are only 3 roots, since g(A) —1 = 0 is equivalent to a cubic equation in A.
Thus one surface from each family passes through each such point (x, y, z). At

a point (x, y, z) on the surface g(A;) = 1, the normal vector has the direction

1 X y z

~(Dig(A;), D2g(Ay), D3g(Ay)) = , , .

2( 18(Ai), D2g(A;), D3g(A;)) (az_)ﬁ b2 — h; Cz—)»i)
At a point (x, y,z) on the two surfaces g(A;) = 1 and g(A;) = 1, the inner
product of the two normal vectors is therefore

YZ y2 -2

@~ A)(@ ) B BE Ay | (@~ A~ )

which can be written as
g0) = g0y) _

0.
A — A

Thus our svstem is orthogonal. Since we can always imbed a given ellipsoid
x2/a? + y2/b% + z2/c? = | in a system of the form (x), the following result
enables us to describe the hnes of curvature on an ellipsoid.

10. THEOREM (DUPIN). The lines of ntersection of the surfaces of a triply
orthogonal system are lines of curvature on the surfaces.
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PROOF. Let A; be the distribution formed by the tangent planes to the ith
family of surfaces. Pick unit vector fields X, Y, Z with
XeAINAs;, YeAyNA;, ZeAjNA;.
Letting V’ be the ordinary directional derivative in R?, we have
YY —VyX =[X,Y] € A;, since A3 1s integrable (pg 1.192).
Using orthogonality, we conclude that
1) (VixY,Z) =(V'y X, Z),

and of course we can permute X, Y, Z 1n this equation. On the other hand, we
also have

2) 0=X(Y,Z)) =(VxY,Z) +(Y,V'x Z),

together with the equations obtained by permuting X, Y, Z. From the equations
comprised in (1) and (2) we can conclude, for example, that

0=(V'xY,Z)=(VxY,Y),

so that V/y Y must be a multiple of X. It follows that the line of intersection of
two surfaces in the first and third family 1s a line of curvature on the surface in
the first family, since Y is the normal along this line of intersection. ¢

An exact converse of Dupin’s theorem is not true—the lines of intersection
of the surfaces of a triple family may be lines of curvature on all the surfaces,
even though the surfaces are not orthogonal. For example, the first family may
consist of concentric spheres around 0, the second family of planes through the
z-axis, and the third family of non-circular cones. On the other hand, if none

of the surfaces in question have umbilics, so that the lines of curvature on each
are orthogonal, then the surfaces are clearly orthogonal. The following is a less
trivial converse to Theorem 10.
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11. THEOREM (DARBOUX). If two families of surfaces are orthogonal, and
the intersections are lines of curvature on both, then there exists a third family
of surfaces orthogonal to the first two families.

PROOF. Let A; and Az be the distributions formed by the tangent planes to
the first and second family of surfaces, respectively. Let A3 be the 2-dimension

distribution which 1s everywhere perpendicular to both Ay and A,. Pick unit
vector fields X, Y, Z with

XeANAs, YeArnNAs, ZeAiNA;.

The hypotheses imply that V'x Y = A X and V'y X = uY for certain functions A
and u. So
[X,Y]=V'xY = V'y X = AX — uY € As.

This shows that Aj 1s integrable, so the third family of surfaces exists, by the
Frobenius integrability theorem. o

Dupin’s Theorem has as a consequence a geometric proof of a theorem about
maps f: U — V from an open set U C R? to an open set ¥ C R* which are
conformal (angle preserving). In the case of maps f: U — V with U,V C
R? = C, it is well-known (Problem 9) that these are precisely the maps which
are complex analytic or whose conjugates are. In R3 the situation is quite
different. One class of conformal maps are the similarities, the compositions
of translations, orthogonal maps, and multiplications by non-zero constants.
There is also an analogue for R?* of the complex analytic map z +— 1/z from
C — {0} to C — {0}. The analogue is easiest to see if we compose this map with
conjugation (= reflection through the real axis), so that we obtain the conformal
map

1 z
I - =—.
z  z|?
The same formula
I(x) = x € R? — {0},

Ix?
where |x| denotes the norm of x, defines a conformal map (Problem 10), called

inversion with respect to the unit sphere. The conformal map

, X
X ri—s
x/?
is called inversion with respect to the sphere of radius r about 0; it keeps points
on this sphere fixed, and in general x and f(x) lie on the same line through 0
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and |x] - | f(x)] = r?. Of course, we can also consider the inversion

5 X — Xo
X Xxo+r —
Ix — xol?

with respect to the sphere of radius r about xo. Notice that any inversion I’
satisfies I’ o I’ = identity (on its domain).

12. THEOREM (LIOUVILLE). Every conformal map f: U — V from a

connected open subset U of R? to an open subset ¥ of R? is the restriction
to U of a composition of similarities and inversions (in fact, at most one of each).

PROOF. Let S C U be any connected surface which is part of a plane or a
sphere. We can find a triply orthogonal family of surfaces, with S contained
in one of the families, such that the lines of intersection with $ are curves with
any desired tangent vector at any given point. The image of this triple family
under f is again orthogonal, since f is conformal. So by Dupin’s Theorem,
the lines of intersections of this new family with f(S) are lines of curvature on
f(S). Therefore we can find lines of curvature pointing in all directions at any
point of f(S). So all points of f(S) are umbilics, and by Theorem 2-2 the
surface f(S) is either part of a sphere or part of a plane. We now use

13. LEMMA (MOBIUS). If U,V C R? are open sets, with U connected, and
f: U — V is a map which takes portions of planes and spheres to portions of
planes and spheres, then f is the restriction to U of a composition of similarities
and immersions (in fact, at most one of each).

PROOF. We begin with a preliminary observation. Let I’ be an inversion
with respect to a sphere around p, and let S be a sphere with p € S. Then
I'(S — {p}) is a plane. This can be verified by direct calculation, or one can
use the following argument: By what we have just shown, I'(S — {p}) is part
of a plane or sphere. It is also easy to see that I'(S — {p}) is complete, but
not compact (for it becomes compact if we add in the point at infinity). So
I'(S — {p}) must be a plane.

Similarly, if P is a plane not containing p, then one can verify by direct
calculation that I'(P) is S — {p}, or one can use the following argument: By
what we have just shown, I'(P) is part of a plane or sphere, and contains
points arbitrarily close to P. If I'(P) were part of a plane Q, then Q would
have to go through p. But I’ keeps planes through p fixed, so we would have
P = I'(I'(P)) C I'(Q) = O, contradicting the fact that P does not contain p.
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So I'(P) must be part of a sphere S through p. Since we already know that
I'(S — {p}) is a plane, we easily conclude that I'(P) is all of S — {p}.

Now to prove the Lemma it obviously suffices to prove that f has the desired
form in a neighborhood of any point p, for then f must be analytic, and
consequently equal everywhere to any one of these compositions. In particular,
we may assume that f is one-one.

Let px be a point of U distinct from p, and let ; be a sphere around p,
such that all points in the ball B bounded by X; are in U, but p ¢ B. Let X,
be any sphere around f(p.). Let I;: R} — {p,} — R® — {p,} be the inversion

with respect to £y, and let Ir: R* — { f(p.)} = R* — {f(p4)} be the inversion
with respect to Z,. Then

F=hLofol,b:R>—~B —» R?

is defined everywhere on R?* — B, has p in its domain, and takes portions of
planes and spheres to portions of planes and spheres.

Now if S is any sphere inside X; with p, € S, then f(S) must be a sphere
in V with f(p,) € f(S), so L(f(S)—{f(p.)}) 1s a plane. It follows that F
takes planes in R? — B into planes of R3. It also follows that F takes straight
lines in R* — B into straight lines of R?, since a straight line is the intersection
of two planes. We claim that F also preserves parallelism of straight lines. This
is clear if /; and [, are parallel lines lying in a plane P C R* — B, for then
F(ly) and F(/2) are disjoint straight lines in F(P). For the case of two parallel
lines /; and /> lying on opposite sides of B, we choose a straight line /3 parallel

I I

{?: ; Iy
\_/I
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to /; and /> such that /; and /5 lie in a plane Py C R? — B while /5 and /; lie in
a plane P, C R? — B. Then F(/;) is parallel to F(/3) and F(l3) is parallel to
F(l5), so again F(/}) is parallel to F(/3).

Now let T, denote the translation x — x + ¢, and consider the map

G=T_frpoFolp,

defined in some convex neighborhood U of 0. This map takes 0 to 0, and
also takes straight lines to straight lines and preserves parallelism. From the
parallelogram construction of the sum of two vectors, it is clear that we must

J /
/ /x +y
/0 /x
have G(x + y) = G(x) + G(p) whenever x and y are linearly independent
vectors with x, y,x + y € U. The same result holds for linearly dependent x
and y, by continuity. From this we easily see that G(ax) = aG(x) foralla € R
with x,ax € U. So G is linear, and thus (Problem I.3-31) a composition of an
orthogonal map and a self-adjoint map. But G also takes small spheres around 0
to spheres. So we easily see that the self-adjoint factor must be a multiple of
the identity, and consequently G = T_p(py o 2 o f o I} o T is a similarity

in a neighborhood of 0. It follows that f is a composition of similarities and
inversions in a neighborhood of p.

To show that f is actually a composition of at most one similarity and inver-
sion, we regard f as extended to the “conformal space” R3 U {oo}, where all
similarities are defined at all points, and repeat the proof, choosing px = 00.
Then the inversion I} around py is just a similarity on R?, so we obtain a com-
position of a similarity and one inversion. (If f(00) = oo, then I is also a
similarity, and our composition reduces to a similarity.)

This completes the proof of the Lemma, and the Theorem. ¢

We already have many results about geodesics, which we obtained in our
study of intrinsic Riemannian geometry. The following result, though not at
all hard, has always seemed to me particularly nice, because of the way that
intrinsic and extrinsic notions are intermingled.

14. THEOREM. Let M be a connected surface in R? such that every geodesic
of M is a plane curve. Then M is part of a plane or a sphere.

PROOF. According to Theorem 2-2, it suffices to show that every point p €
M is an umbilic. We can assume that p is not a planar point, since these



212 Chapter 4

are automatically umbilics. Then it certainly suffices to show that any non-
asymptotic unit vector X € M, is a principal vector. To do this, let ¢ be
the geodesic with ¢/(0) = X, lying in the plane P. Proposition | shows that
the curvature of ¢ is non-zero at 0, and hence in a whole neighborhood of 0.
Therefore the desired result follows from

15. LEMMA. If ¢ isa geodesic in M which lies in a plane P and has nowhere 0
curvature, then ¢ is a line of curvature.

PROOF. Since ¢” # 0 lies in P, and is also perpendicular to the surface, we
see that the normal v to the surface along ¢ lies in P. Hence dv(c(s))/ds lies

< TN §
s

in P, which means that it must be a multiple of ¢’(s). [Alternate proof: use
Theorem 8.] «»

To complete our study of geodesics on a surface, we will consider the special
case of surfaces of revolution, where the generally intractable differential equa-
tions for geodesics reduce to an equation with a simple geometric interpretation.
Suppose that our surface is parameterized by

f(u,v) = (p1(u) cosv, pi(u)sinv, pa(u)),

for a curve p = (py, p2) in the (x,z)-plane. Before we do any computations
at all, we notice that by Corollary 1-3 the meridians are geodesics, while the
parallel at height p2(u) is a geodesic if and only if p'(1) = 0. We will not use
all the information given in equations (1) on page 157, but only the fact that the
metric has the form

guu.v) = E(u)
g2, v) =0 = g =
g22(u.v) = G(u)



Curves on Surfaces 213

We then compute the Christoffel symbols (as in Chapter 2, the symbol [i], k]
now denotes the Christoffel symbols for the metric f*( , ) with respect to the
usual coordinate system on R?):

1
1,1]=-F'
(1.1 = 3

[12,2] = [21,2] = —[22,1] = %G’

all other [ij, k] = 0;
E' ) G’ )

Fh:ﬁ’ 2 ="o5 ‘2=F2‘=ﬁ

all other Ff‘j =0.

If t = y(t) = (1,(1), y»(t)) is a geodesic in R? with the metric f*( , ), then
the equations on pg. 1.329 give

d*y G’
(%) dez + & ()

dndy, _
dt dt

Now for any curve ¢ on a surface of revolution, let r(¢) be the distance
from c() to the axis of revolution, and let a(z) be the angle between ¢ and
the meridian curve that it crosses at time ¢. More precisely, @(¢) is the oriented
angle from the meridian tangent vector fi{c(f)) to ¢’(t) when ( fi, f>) is chosen
as the positive orientation for the tangent space of M, so that

’ A\ (1)

< cosan s sy L2 AV
¥ —-(cosa)lf1| +(sma)|f2|.

Then equation (x) immediately leads to
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16. THEOREM (CLAIRAUT). A geodesic ¢ on a surface of revolution satis-
fies the equation
r(t)-sina(t) = A

for some constant A. Conversely, if ¢ satisfies this equation and is not a parallel,
then ¢ is a geodesic, provided that it is parameterized by arclength.

PROOF. We can write ¢ as ¢ = f oy for some curve y which is a geodesic
in R2 with the metric f*({ , ). Equation () gives

0=G(y() -y )+ G K1) (' (1)
=(G o)) -7 (1) +(Goy)'(t)-y)'(1)
=[G oy) V1),

so G(y,(1)) - v,/ (1) 1s constant.
On the other hand, since g;» = 0, we have

G (1) v (1) = (ily(0)) -y (1) + faly @) - 7, (), Laly @)
= (c'(), 2y (1))
=D | L2y @) - smalr)
=’ (1) - \/m -sina(t),

50 /G (y,(1)) - sina(f) 1s constant. But the formulas on page 157 show that

VG (1) = p(n (),

which is exactly the distance of ¢(t) from the z-axis.
The proof of the converse is left to the reader. <&

Clairaut’s Theorem allows us to give a very complete description of the global
behavior of geodesics on surfaces of revolution. Let p be the profile curve of
the surface, parameterized by arclength, and let ¢ denote the projection of ¢
on the (x,z)-plane. so that ¢ lies along the image of p. Let us suppose that
the geodesic ¢ is also parameterized by arclength. and. for concreteness, that
¢’(0) is pointing upwards. If our geodesic ¢ satisfies r(7) - sina(t) = C. then the
length of ¢'(1) is

1&"(0)] = (p'(1), " (1)) = cosa(t)

C?2
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From this we see that so long as ¢ lies in a region where r(¢) is bounded away
from C, the tangent vector ¢/(¢) will have length bounded away from 0. Tt is
now easy to deduce the following: If the profile curve p never comes within
distance C of the z-axis, as we traverse it in the direction of ¢, then ¢ must
traverse the whole of p in this direction.

Now suppose that p does come within distance C of the z-axis, and let § be
the first meridian above the one at r(0) which has radius C. Then ¢ clearly
must come arbitrarily close to 8. If § happens to be a geodesic, then ¢ cannot
intersect §, for we would then have o = /2, which would mean that ¢’ would
point along a tangent vector of §.
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Finally, suppose that § is not a geodesic. Consider a geodesic A starting at
a point of §, with tangent vector pointing along 8. If B is the angle which A
makes with the meridian, then A satisfies

r(t) - sin B(¢) = constant,

and r(¢) = C when B(1) = /2, so the constant must also be C. Since § is
not a geodesic, the region directly above § has r < C, and A cannot go into
it. Consequently, it enters the region where ¢ is. A rotation about the axis will

bring A into coincidence with ¢ since they are both determined by the same
constant C, and naturally the rotated curve A is still a geodesic. In other words,
we have shown that ¢ eventually hits §. Moreover, ¢’ points along 8" at the
intersection point (as it must, since r(t) - sima(t) = C). In addition, ¢ must
bounce off § and proceed downwards. Naturally, the shape of the part going
downwards must differ from that of the part going upwards only by a reflection.
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ADDENDUM 1
SPECIAL PARAMETER CURVES

Proposition 1. 5-18 immediately implies

17. COROLLARY. Let p be a point on a surface M in R3.

(@) If p is not an umbilic point, then there is an imbedding f: U — M, with
p € f(U), whose parameter curves are lines of curvature.

(b) If K(p) < 0, then there is an imbedding f: U — M, with p € f(U),
whose parameter curves are asymptotic curves.

It is sometime useful, especially in the next chapter, to write some of our
formulas in terms of these and other special coordinate systems; readers may
check for themselves that the following formulas are correct.

A. The parameter lines are orthogonal.
Then F =0, and the formula in Problem 13 becomes (subscripts denoting
partial derivatives)

K= _ 1 E, + G
2VEG (\VEG), \VEG) |
B. The parameter lines are lines of curvature.

In this case, of course, we still have the equation from (A). We also have

l=kE n=kG, m=0, F=0.

So the Codazzi-Mainardi equations (page 56) become

E, (1 n
’2‘7(E+E)
*ﬁ(gi)
m=s G

C. The parameter lines are asymptotic curves.
We have / = n = 0, and the Codazzi-Mainardi equations become

[3(EG — F?)1 4+ FE, — EG\]

my = -m
EG — F?

[3(EG — F?); + FG, — GE,]

EG — F?

nly = cm.



218 Chapter 4

ADDENDUM 2
SINGULARITIES OF LINE FIELDS

In Chapter .11 we defined the index of an isolated zero of a vector field,
and we proved (Theorem 1.11-30) that if a vector field on a compact oriented
manifold M has only isolated zeros, then the sum of the indices of these zeros
is the Euler characteristic of M.

Now consider the situation where we have a 1-dimensional distribution A
defined in a neighborhood of a point p of a 2-dimensional manifold M, except
at the point p itself. As is easily seen from the pictures below, it may not be

|

possible to find a nowhere zero vector field X such that A(q) is always spanned
by X(gq). Nevertheless, we will define an index of A at p.

As in the case of a vector field, we first suppose that the distribution A is
defined on U — {0}, for U a neighborhood of 0 € R2. We introduce the
projective line P!, which is ' with all pairs of antipodal points x and —x
identified. Alternatively, P! is the set of all lines through 0 € R?, and thus the
set of all directions in R2. Then we have a map fa: U — {0} — P! defined by
/a(g) = the direction of A(g). If we let i: S! — U be i(x) = ex for some
¢ > 0, then we have the map fa oi: S' — P'. But P! is homeomorphic to
S we can define a homeomorphism a: P! — S' by noting that P! is the
same as a semi-circle with end points identified. Thus we have a map

ao faoi: ST — S,
and this map has a certain degree. We define the index of A at p to be

1
index of A at p = Edegree(a o facli).
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The same arguments which we used in Chapter L.11 allow us to extend this
definition from R? to any arbitrary surface. Some examples of these indices are
given below.

S 2y
LS

2
index =

If A happens to be of the form A(g) = space spanned by X(gq), for a vector
field X, and fy: U — {0} — S!is the map taking ¢q to X(g)/|X(g)| € S!, then
we have the commutative diagram

g1 Jx oi gl

RN«

]P)l

s

Sl

where 7 is the natural projection. Since @on: §' — S has degree 2, it follows
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that we have
1
index of A at p= Edegree(a o faoi)

1 .
=3 degree(a o o fx oi)

= degree(fx o i)
= index of X at p.

In particular, the index of A at p is an integer in this case.

Conversely, if the index of A at p is an integer, then a suitable vector field X
can be found. The easiest way to see this is to give an alternative description of
the index. Let ¢: [0,1] — R2 be the curve c(t) = &(cos 2rt,sin27t). The angle
between the x-axis and the direction of A(g) is defined only up to a multiple
of 7 [while the angle between the x-axis and a vector is defined only up to
a multiple of 27], but we can find a continuous function #: [0,1] — R such
that 6(¢) is an angle between the x-axis and the direction of A(c(¢)). Then
(compare Proposition 11.1-6) we have

1
index of A at p = 5 [0(1) = 0(O).

If this index is an integer, so that 6(1) —6(0) is a multiple of 2w, then we can
pick out X along ¢ by letting X (c(r)) be the unit vector in A(c(#)) such that
6(¢) is an angle between X(c(f)) and the x-axis.

Given any 1-dimensional distribution A defined in M —{py,..., pk}, we can
define a 2-fold covering space w: M’ — M —{p1,..., Pk} just as on page 198:
we let the two points of @~ 1(g) correspond to the two unit vectors in A(q).
If U is an open ball around p;, then w1 (U) is either two disjoint copies of
U — {p}, or else it is connected and w|w 1 (U) looks like the map z z?
taking

{:G(C:0<|:|<1}—>{:e(C:0<|:|<1}.

The first case occurs when A comes from a vector field, and the second case
occurs when it does not. In the former case, we will add two new points to M,
one for each of the disjoint copies of U — {p;}, defme @ of each of these
two new points to be p;, and define the neighborhoods of these new points in
the obvious way so that @ ~'(U) now consists of two disjoint copies of U. In
the second case, we will add just one new point p; whose neighborhoods we
define to be the sets {pf} U w1 (A —{p}) for Aa neighborhood of p; n U.
Let M be M’ with all new points added. Then M is a manifold, but the map
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w: M — M is not a 2-fold covering space, for over certain points p; it looks
like the map z > z2. These points p; are called “branch points” of the 2-fold
“branched covering space” w: M — M. There is clearly a distribution A on
o (M — {p1,..., pr}) with w*z = A; moreover A obviously comes from a
vector field.

If our onginal A looks like

1 .
index 3 index — -

in a neighborhood U of p;, then A looks something like

T/

index 0 index —2

-~

(to see this, just note that if we wrap the bottom pictures twice around the origin,
by z > z?, then the images cover the top pictures). In general,

18. LEMMA. Let w: M — M be a 2-fold branched covering space, and
let p be a branch point. Let A be a 1-dimensional distribution defined on a
neighborhood of p, except at p itself, and let A be a l-dimensional distribu-
tion defined on a neighborhood of @ ~!(p), except at w ~'(p) itself, such that
@A = A. Then the index 7 of A at @~'(p) is related to the index i of A
at p by
I=2i—1.

PROOF. Regard both p and @ ~!(p) as 0 € C, and @ as the map - — z2. Let
¢: [0,1] —> R? be the semi-circle ¢(r) = e(cos wt,sinnt), and let 6: [0,1] — R
be a continuous function such that 6(r) is an angle between the x-axis and the
direction of K(c(t)). Note that by our construction of A we have

P=2.L[001) - 000)).
2m
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Now the curve @ o c: [0,1] — R? is the circle
@ o c(t) = £2(cos2mt, sin 27t).
It is easy to see that the function
o) =0(@) +nt

gives an angle between the x-axis and the direction of A(w o c(1)). So

|

—le() - P(0)] = —[9(1) - 6(0)] + 5

|
5

— 2
*»

+

N~ N

It is also easy to find the Euler characteristic )((A?).

19. LEMMA. If w: M — M is a 2-fold branched covering space with [
branch points py,..., p, then

X(M) =2x(M) - 1.

FIRST PROOF. We will use a triangulation of M (Problem 17 suggests a simple
proof that any compact surface can be triangulated). Choose the triangulation
so that p1, ..., pr are included among the V vertices (0-simplexes), and let there
be E edges (1 simplexes) and F faces (2-simplexes). There is an obvious trian-
gulation of M with 2 vertices over each vertex of M, except for the vertices
P1,. .., p; over which there is only 1 vertex. So the number V of vertices
of M is
V=2v-I,
while we have
E =2E R F =2F.
So
Y(M)=V —E+F=2V—-1-2E+2F =2y(M)-1.
SECOND PROOF. Let X be a vector field on M with only finitely many zeros
q1,...,qk, and let ¢; be the index of X at g;. We might as well assume that
the p; are contained among the ¢’s, for at any point we can always introduce
a new zero of X (with index 0). Then there is a vector field Xonow (M-
{q1,....qx}) with w*f = X. If g, is a branch point, then by Lemma 18,

index of X at w~'(g;) = 2; — L.
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If g; is not a branch point, then @ ~'(g;) consists of two points g}, g7, and
index of X at gj or qj =1;.
Then Theorem 1.11-30 gives

X()VI) = sum of the indices of X
=2 Z ¢; — number of branch points

= 2x(M) = 1. %

Exactly the same sort of reasoning which was used in this second proof leads
us to our main result.

90. THEOREM. Let M be a compact oriented surface, and A a l-dimen-
sional distribution on M — {p1,..., px}. Then the sum of the indices of A at
the p; is x(M).

PROOF. Consider the 2-fold branched covering @ : M — M constructed pre-
viously, and the distribution A on M. If p; is a branch point, then by Lemma 18

index of A at @ '(p;) = 2(index of A at p;) — 1.
If p; is not a branch point, then @~ 1(p;) consists of two points p;, pj, and
index of A at p} or p! = index of A at pi.
It follows that

] sum of the indices of A = 2(sum of the indices of A)

— number of branch points.

Since A comes from a vector field, it follows from Theorem 1.11-30 that
(2) sum of the indices of A = X()VI).

The result now follows from (1), (2), and Lemma 19. &
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PROBLEMS

1. Let M — R3 be a surface, and X € M), a unit vector. Let X be the circle
in the plane perpendicular to X which is tangent to M at p and has radius
1/l (X)|. Show that for every curve ¢ in M with ¢/(0) = X, the center of the

osculating circle of ¢ at 0 lies on Z. The picture below is a hint.

\

e
» ¢
N \@0@

<

1
leneoth ———
S )]

2. Let ¢: R — R3 be a curve which lies on a sphere of radius r.

(a) We have k, = 1/r, and consequently ¥ = vV 1/r? + ng > 0.
(b If t,n,b 1s the Frenet frame of ¢, and v(s) = v(c(s)), where v 1s the unit
normal of the sphere in which ¢ lies, then

0={t,v) =x{n,v)+1/r
(n.v) =1(b,v)
(b.v)' = —7(n,v).
{¢) If " =0. then 7 = 0. If «’ is nowhere 0, then 7 is nowhere 0 and

/

cLE]-
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(d) Conversely, if this condition holds, then ¢ lies on some sphere.
(e) For convenience, say r = 1, so that

K=\/1+Kg2.

Let t,u, v be the Darboux frame for ¢. By differentiating the equations

t' =xkgu+v

t' = «n,
show that
I3
_ _Ke
7= 5
1+ kg

3. (a) Let X € M, be a unit vector, and suppose that the geodesic y with
¥'(0) = X has «(0) = 0. Then

Itg (X)) = v —K(p).

(b) If y is a geodesic with y'(0) € M) a principal vector and «(0) = 0, then
K(p) =0.

(c) If y; are geodesics with perpendicular tangent vectors vi'(0) € Mp, and
x1(0) = 0, but k2(0) # 0, then the torsion 72(0) of ¥, satisfies

I72(0)] = v —K(p).

4. (a) Let ¢ be an arclength parameterized curve on a surface M C R3 such that
¢'(0) € M, is an asymptotic direction. If ¢ 1s not asymptotic at p [c"(0) ¢ Mp],
then «(0) = 0.
(b) Now suppose that ¢”(0) € Mp. Let ¢ be the arclength parameterized asymp-
totic curve with ¢'(0) = ¢’(0), and denote the curvature and torsion of ¢ by i
and T.

Using Laguerre’s formulation of Proposition 4, and equation (13) on page 192,
show that

€(0)[3E(0) — T(0)] = 2(0)R(0)

= «(0)[£3V/—K(p) — 1(0)] = £2V/—K(p) k(0).
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(c) Show that at a point p € M where K(p) < 0, the intersection of M and
the tangent plane at p consists of two curves which cross each other at p, and
which point in the asymptotic directions. For either of these curves, show that

the curvature at p is 2/3 times the curvature of the corresponding asymptotic
curve through p (Beltrami).

5. Let M  R3? be a surface, and let X}, X, be an orthonormal moving frame,
in terms of which we write

H=> 16 6.
ij
(a) By Problem 2-5 we have
VII= Y Lt ®6/ ®6*

i,j.k

Dol = dly =Y Lol =Y lipw].
k P P

If X;, X, is the frame X, X in the proof of Proposition 4, apply this equation
to X; to obtain

where

dl
m ha = —= = 2h2- wf(X),
ds
and deduce the first part of Proposition 4. Deduce the second part similarly.

(b) Show that
dlﬂ? = Zd],'j N Zl,-ja)/f)' A 67,
i isp

Conclude from equation (1) that
(lizy — 1,'1;2)01 A0 =0.
(¢) If

VL= > ljunt’ @67 @ 0% @ 6",
i, j.k.h
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show that

dhi:
hin = 5 31207 (X1)

dliz1

— (2l = hiwi (X))

= 22 2— — Ly | =1 X1).
s ( [ s 11,1] 11,1)601( 1)

112;11 =

(d) For all arclength parameterized curves ¢ in M with the same tangent vector
¢'(0) € M, the quantity

kn'(5) — 275 (5)ig" (s) — 57 (s)kg(s) — 6lcn(s) — H(c(s)]kg* (5)
has the same value at s = 0. The same is true for
1, (s) + [2kn(s) — H(c(s))]kg'(5)

+ [SKn’(s) — 6Tg(s)kg(s) — 6w] Kkg(s).

ds

6. Let X € M), be a principal vector, and ¢ the principal curve with c'(0) = X.

(a) Determine «,'(0).
(b) Use Problem 5 to determine «¢'(0) [in terms of X(H)].
(c) Show how to determine «'(0).

(d) Show how to use equation (7) on page 189 to determine ¢'(0), and then
how to find t(0).

7. Let m: M — M be an n-fold covering of a compact orientable manifold M.

(a) Let X be a vector field on M with only finitely many zeros. Show that there
is a vector field X on M with # zeros of index ¢ for every zero of X with index .
Conclude that x{(M) =n - x(M).

(b) Also prove this result by finding a triangulation of M for which there is a
corresponding triangulation of M with n k-simplexes for each k-simplex of M.

8. Equation (x) on page 205 is the basis for the best coordinate system for
ellipsoids and hyperboloids of one or two sheets. For given (x, y,z) let (1) be
the cubic

(1) ¢(A) = (a® — V(B> = M =) (gR) = 1),



228 Chapter 4

with roots

o< d? a® < Ay < b2, b? < k3 < 2.

L]

Clearly
P(A) = (A1 —A) (A2 — M) (A3 — A).

(a) Substituting for the expression for ¢(A) from (1), and choosing A = a?, b2,
and ¢?, obtain

W2 (a? — M)(@® — A2)(@® — As)
- (a® = b*)(a? —¢?)

2 (B2 = A)(b? — A)(B? — s)
> e YT ey

2 (c? = A)(c? = A)(c? — A3)
- (c2 —a®)(c? = b?)

(b) Setting one A; = constant, these equations give a parameterization of the
surface g(A;) = 1 by means of the two other variables A;, Ag. Setting

we have the surface

parameterized by

“
I

\/a(a —u)(o —v)
(0 — B)a —y)
\/ﬂ(ﬂ —u)(B — v)

(B—a)(B—v)

\/J’(V —u)(y —v)
(y—a)y —B)

¥
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Note that the u- and v-parameter lines are clearly lines of curvature. Calculate

that
u(u —v) Fe G_v(v—u)

T fw B T W)
where f() =4(a —1)(B —t)(y — ).
9. Let f: C— Che

fS(x,y) = f(x +iy) = (ulx,p),vx,y)) =ulx,y) +iv(x, p)..

(a) Galculate that

F*dx @dx +dy @ dy) = (ux? + vx2)dx @ dx + (u,)* +v,) dy ® dy
+ (uxuy + vxvy)(dx @ dy +dy @ dx).

Conclude that f is conformal if and only 1f
Ut + ol =uyt+v,0 and  wuxuy 4+ vxvy = 0.
(b) Show that f is conformal if and only if
Uy = tvy, uy = Fuy.
Hint: Multiply the first equation of part (a) by v,?.
10. Consider the map

I(x) = — x e R® — {0},
|x |2

(a) If S2(r) is the 2-sphere around 0 of radius r, and X € Sz(r)p, then I,(X) €
SZ(%)I(I,) 1s parallel to X, and |1.(X)| = %|X|.

(b) If v is the unit normal to S2(r) at p, then I,(v) is } times the unit normal
to S2(Ly at I(p).

(¢) I 1is conformal.

11. Note that Lemma 13 is valid also for U,V C R?, where f: U — V takes

portions of straight lines and circles to portions of straight lines and circles.
Conclude that if f is orientation preserving, then f is of the form

az+b
cz+d’

J(o)= a,b,c,d e C.
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12. Use Clairaut’s Theorem to analyze the geodesics on a torus. (The fact that
points with different values of r can have the same height is confusing, but
irrelevant; it may help to think of the torus in terms of the profile curve on the
right, but with the end points identified.)

Answer: All geodesics, except the inner parallel, intersect the outer parallel.
Those which intersect at a small angle 6 describe a sine-like curve between two
parallels at equal distances from the outer one. For a certain angle 0 we obtain
a sine-like curve between the top and bottom parallels. For somewhat larger
0 the curve flops over the top and bottom and bounces between two parallels
on the inner part of the torus. For a certain angle 6 we obtain a curve which
approaches the inner parallel asymptotically. For slightly larger 6 the geodesic
hits the inner parallel, at a small angle, after going around many times. As 0

increases, the geodesic hits the inner parallel at larger angles, after going around
fewer times, until, at @ = /2, we obtain a meridian circle.

13. From pg. I1.131 we have the formula

—1Gn + Fia — 3En 1Ey R —3E
W*K = det Fy — 3G, E F
1G> F G
0 1E; 3G
~det| 3E2 E F |,
¢y F G

where W = VEG — F2. Verify the following (seemingly non-rational) expres-
sion for K, due to Frobenius:

E E E;
1 1 F, -Gy F-E
K=———det| F F £ +——[( ) +( ) ]
4
4w (G G Gz) 2W w 1 w 5
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14. Let /: U — M be an imbedding whose parameter curves are asymptotic
curves, so that

fu=Af+Bf2, f2=Cfi +Df.
Choose the orientation so that det( fi, /2, fi2) > 0.

(a) For the affine first fundamental form 1, we have

g =¢n =0 and g12 = Vdet(fi, /2, fi2) = a, say.
(b) The Christoffel symbols for Iy are

111,21 = oy, [22,1] = a2, all other [ij, k] =0.

(03] (4]

1 _ 2 _ k _

s0
[0 4] (05]
Vah=—h  Yph=—_/
(c) We have
s(fi, [)) = fij = Y5 fi = Lijk = Sij — Y5 [is Juh,s
and consequently
L = Ba, ly2=Aa —ay, ln=Da—ay, [f2n=Coa
(d) Show that
(£111)* = det(fi, fir, finn)
—(b222)* = det( f2, f22, f222)-

[This gives another proof to the second part of Theorem 7.]
(e) Show that

£i12 = £221 = 0.
Thus

Iy = Jdet(fi, fur, fin) ds' ®@ds' @ds' + /= det( f2, f22. f222) ds*Qds*®ds?.

15. (a) For the parameterization in Problem 14, show that the Pick invariant 1s

_ hitax
(912)*
(b) On a region of M where £;;; = 0, we have fj; = afi. Hence M is a ruled

surface. Similarly on a region where f2;; = 0. Conversely, a ruled surface has
J =0.
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16. As an alternative to the approach taken in Problem 3-11, use Problem 14 to
show that a doubly ruled surface with K < 0 has I = 0, so that it 1s quadratic,
by Proposition 2-19.

17. Show that a compact Riemannian 2-manifold can be triangulated by choos-
ing the vertices to be an e-dense set, where every point has a geodesically convex
neighborhood of radius > &, and choosing the edges to be geodesic segments.



CHAPTER 5

COMPLETE SURFACES
OF CONSTANT CURVATURE

We have already seen, in Chapter 3, that there are many surfaces with con-
stant curvature. On the other hand, few of our examples were complete
manifolds. In this chapter we will determine precisely which surfaces in R?
can be obtained by isometrically immersing complete manifolds with constant
curvature K > 0, K =0, or K < 0.

In the case of complete surfaces of constant curvature K > 0 we will actually
assume that the surface is compact; in Chapter 8 (Theorem 8-17), however, we
will see that this additional hypothesis is superfluous. By Hadamard’s Theorem,
our surface is an imbedded submanifold M C R3.

1. LEMMA (HILBERT). Let M be a surface immersed in R? andlet p e M
be a non-umbilic point. Let k; > k» be the two principal curvatures on M and
suppose that ki has a local maximum at p, and k> has a local minimum at p.

Then K(p) <0.

PROOF. According to Addendum | to Chapter 4, we can choose an imbedding
f:U — M, with p € f(U), whose coordinate lines are the lines of curvature.
Then Gauss’ equation and the Codazzi-Mainardi equations become [subscripts,
except those on ky and k», denote partial derivatives]

0 K=- 2\/1,5—(; [(\/%6)2 ’ (\/%)1]

Ez / n _ Ez
(2) [2—7(E+5)—7(k1+k2)
G] / n N G] .
(3) My _—2—(E+E)_T(kl+k2)’

the second equalities in (2) and (3) follow from the fact that

I =k E, n=kQaG.
233
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Moreover, differentiation of these last two equations yields

ok ok
=" EtkEy m=—G+kG.
ot as

(The functions k; are differentiable near p, since the functions H and K are

differentiable, and k; = H + v H? — K, where H? — K > 0 in a neighborhood
of the non-umbilic point p.) Together with (2) and (3) we then have

2E 0k,
14 Fr=-— —
2) 2 ky—k, ot
26 oky
3’ G L
3 "k —ky ds

Substituting (2'), (3') into (1) gives
1 [ 2E ¥k 2G azkz]

I K= - . .
( ) ki — k> 912 +k1—k2 052

T 2EG
. ok
+ (something continuous) _Bt_l
k
+ (something continuous) - %
s
Since k, has a local maximum at p, and k2 a local minimum, we have
ok, oks 0%k, 0%k
By =22(p) =0 <0, —X(p)=o.
Y (p) 35 (p) =0, ¥ (p) =0, 352 (p) =

Together with (') this shows that K(p) < 0. %

2. THEOREM. If M is a compact connected surface in R3 with constant
curvature K > 0, then M is a sphere.

PROOF. Let k; > k> be the principal curvatures on M, and let p be a point
where k, achieves its maximum. Then k; = K/k; has its minimum at p. If
we had ki(p) > ka(p), so that p was not an umbilic, then the Lemma would
imply that K(p) < 0, a contradiction. Hence ki(p) = ka(p). Moreover, for
any point ¢ € M we then have

ki(p) = ki(q) = ka(q) = ka(p) = ka(p),

so also k1(g) = ka(q). Thus all points of M are umbilics, and Theorem 2-2
applies.
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We also have another result of interest:

3. THEOREM. If M is a compact connected surface in R?, with K every-
where > 0, and constant mean curvature H, then M is a sphere.

PROOF. As before, if k1 achieves its maximum at p, then kK, = H —k; achieves
its minimum. Since we are assuming K(p) > 0, we find that k(p) = k2(p),
and the rest of the proof proceeds as before. ¢

We now turn our attention to immersed surfaces M in R? which are flat,
that is, which have K = 0 everywhere. We know that if a connected open set
U C M consists entirely of planar points, then U is part of a plane. Let us
consider a point of M which is not a planar point, and hence a parabolic point.
In a neighborhood U of this point we can choose a C* unit vector field X
such that each Xj(g) is a principal vector with principal curvature k;(g) = 0,
and another C* unit vector field X3, orthogonal to X}, such that each X>(g)
is a principal vector with principal curvature k»(q) # 0.

4. PROPOSITION. The integral curves of Xj are straight line segments. Con-
sequently, every non-planar point in a flat surface has a neighborhood which is
a ruled surface.

PROOF. Let 6%, wlz, lﬁ? be the forms associated with the adapted orthonormal
moving frame (Xj, X2, v). Since

- {0 i=1
P =

X Ky Xy i=2,
we have

Y (Xp) = =¥ (X)) = — (X1, Vixv) =0

VI = —v3(X) = —(X2, Vix,v) = —ka6* (X)),
In short, we have

vi=0, yi=-kt?,

so one of the Codazzi-Mainardi equations (page 70) gives

0=dy} = —y3 A w? = k0? A wh

Since k> is never 0, this can happen only if w? is always a multiple of 6. This
implies that
0= of(X1) = (Vix, X1, Xa),
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while we also have
0=y (X1) = (Vix, X1, Xa3).

Therefore V', X; = 0, which means that the integral curves of X; are straight
lines in R3. ¢

We still haven’t said what happens at a planar point which is a limit of par-
abolic points, but before worrying about such points, we will first obtain some
information about flat ruled surfaces, classically known as developable surfaces.

Consider a ruled surface

(1) Js, 1) = c(s) +18(s),

where we assume |§| = 1 for convenience, but do not necessarily nsist on the
canonical parameterization (since it is not always possible to introduce 1t). As
we have seen (page 147 and page 197), this surface is flat precisely when ¢/, 8,8’
are everywhere linearly dependent. Let us first consider an open interval for s
on which 8,8’ alone are everywhere linearly dependent. Since |§| = 1, we have
(8,8"y =0, so actually § must be 0, and § is constant. We then have a portion
of a cylinder. Next let us consider an interval on which 8,8’ are everywhere linearly
independent. Then there are unique C* functions o, 8 with

(2) c'(s) = a(s)8(s) + B(5)8'(s).

Let

(3) *(s) = c(s) = B(s)8(s).

Then

(4) *'(s) = ' (s) = B(s)8'(s) — B'(5)3(s)

= [a(s) — B'(5)]8(s).

Again, we will consider only two special cases. On an interval where a(s)—B'(s)
is always 0, we have ¢*(s) = constant vector ¢§, and by (1) and (3) our surface is

fs.0) = cg + (1 + B(s))8(s),
which is a portion of the cone

g(s, 1) = ¢§ +18(s).
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On the other hand, on an interval where a(s) — B'(s) is never 0, we have

C*/(S)

() 8(s) = aG) = f)

so by (1) and (3) our surface 1s

f(s,6) = c(s) +18(s) = c*(s) + (¢t + B(5))é(s)

= AN Y
=cC (S)_'—[a(s)—ﬂ/(s)]c (S)a

which is a portion of the tangent developable
gls,1) = c*(s) +1c*'(s)
of the curve ¢*. [Notice that by (4) we have
*"(s) = (a(s) = B(s)8'(s) + (&'(s) — B"(5))8(s);

since we are on an interval where 8’ and § are linearly independent and o — g’
is nowhere 0, this shows that the curve ¢* does indeed have non-vanishing
curvature on the interval.]

The discussion in the preceding paragraph constitutes the classical “classifi-
cation” of developable surfaces, which was commonly expressed by saying that
all developables are planes, cylinders, cones, or tangent developables. We have
clearly not proved any such result, since we have only considered special in-
tervals on which certain conditions hold. Nowadays people tend to say: Oh
well, the classical classification of developables was really for analytic surfaces—
one ought to say that a connected analytic developable surface is either a plane,
cylinder, cone, or tangent developable. But even this is not true. It is true that
if a connected analytic developable surface contains a plane, cylinder or cone,
then it must be a plane, cylinder, or cone; for planes, cylinders, and cones are
the surfaces which arise in our analysis when certain functions are zero on a
whole interval. But an analytic developable surface can also be made up of
several tangent developables joined together along a line belonging to neither.
For example, consider the analytic function §: R — S? defined by

1

| 8(s) = (1452 1+ 83sh).
W VA 4522+ (1 +5%)2+ 58

We clearly have

(2) 8 (s) = sA(s)
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for some analytic function A, and we easily check that

(3) A(0) is not a multiple of  §(0).

Now let ¢: R — R? be an analytic curve with ¢(0) = 0 and

(4) c'(s) = 8(s) + A(s).

Since ¢’(0) = §(0) + A(0) is linearly independent of §(0) [by (3)], the map
f(s,0) = c(s) +18(s)

is an immersion at (0,¢) for all z. We claim that f is flat at all points, 1.e., that
c’(s),68(s),8'(s) are linearly dependent for all s. This 1s clear for s = 0, since
8'(0) = 0, while for s # 0 we have, by (4),

c'(s)=1-8(s)+ 55’(3).

This equation, together with equation (3) on page 236, shows that for s # 0 our
surface is the tangent developable of the curve

1
c*(s) =c(s) — ;5(3‘).

Since ¢ and § are analytic, ¢* is definitely not analytic at 0. Instead we have two
different curves for s > 0-and s < 0; it is easy to see that

c*(s) - (=00, —00,0) as s — OF
c*(s) = (00,00,0) as s— 0.

Our surface looks something like the following picture:

N

7
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The possible complexity of analytic developables is perhaps most strikingly
illustrated by the fact that there is an analytic developable surface which is home-
omorphic to the Mobius strip; it may be constructed as follows (see Wunder-
lich [1] for details). We take an analytic closed curve ¢ which looks like the
center line of the paper Mobius strip. In the paper model, this line is a geo-

¢ looks like
the imageof — =2 —

when we make
a paper Mobius strip

desic, since it comes from a straight line in the flat piece of paper which we
bent to form the Mébius strip. So we want a developable surface on which ¢
is a geodesic. This can be obtained by taking the rectifying developable of ¢
(Problem 3-13); because of the way ¢ twists, its rectifying developable twists so
as to be homeomorphic to the Mobius strip.

Since so many complexities arise even for analytic developables, it might seem
hopeless to say anything at all about flat surfaces which are merely C*, and
which may contain planar points (in which case we cannot even be sure that
they are ruled surfaces). To see how C* flat surfaces can be different from
analytic ones, consider the two surfaces pictured below. The first is obtained by

rolling up three pieces of a disc (choosing an appropriate profile for the rolled
up portions, so that the surface is C*), the second by gluing a cylinder and a
cone to a plane. In Chapter 3, our construction of a C> flat Mibius strip gave
another example, in which two tangent developables were glued together in a
C®°, but non-analytic, way. In the above pictures we have singled out certain
points p which are planar points, but at the same time the limit of parabolic
points. In each case there are segments (indicated by dashed lines) which have p
as an endpoint, but which cannot be extended past p in the other direction.
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On the other hand, these rays do not go through parabolic points; in fact, most
of the points on them lie in completely planar regions. Moreover, in each case
there 1s also a segment (indicated by heavy lines) containing p in its interior. We
will show that this situation is completely typical. The main tool is a Lemma
which is obtained by following the philosophically prescribed route:

5. LEMMA. Let p be a parabolic point on a flat surface M immersed in R,
let L, C R? be the straight line containing the integral curve through p of the
vector field of Proposition 4, and let O, be the component containing p of the
set of points in L, N M where k3 # 0. Let ¢ be the arclength parameterization
of Lp, with ¢(0) = p, and let k(s) = k2(c(s)). Then on O, the function & is of
the form

k(s) =

As + B

for some constants A and B.

PROOF. We keep the same notation as in the proof of Proposition 4, so that
we have

0 yi=0, Q) Y3 = —k,02.

We have already found, using one of the Codazzi-Mainardi equations, that w?
is always a multiple of #2. This means that on the region where kz # 0 it is
also a multiple of 3, say

(3) of = gv3.

Now we use the other Codazzi-Mainardi equation, to obtain
(4) dy; ==y nwy =0 by ()
Thus

0=dy) = —dka AO* —k,d6* by (2)
= —dk, K +k2a)12 /\01,
and therefore
dk2 A 0* = —k20" A wi.
Applying this to (Xi, X3) gives
(%) Xi(k2) = —kawf(X2)

= —kag¥3(X2) by (3)
= (k2)’g by (2).
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We also want to use the Gauss equation dwi = —K 0! A 62 (page 69). Since
K = 0, this says that

(5) do} =0.
Hence

0 =dwi = d(g¥3) by (3)
=dgny;+0 by
= —kodg nO* by (2)

Applying this to (X7, X2) gives dg(X;) = 0. In other words,
() g is constant along the integral curves of Xj.

From () and () we see that the function k (s) = k2(c(s)) satisfies the differ-
ential equation

(%) k'(s) = —Ak(s)? for some constant A.

We can solve this explicitly: Since

we have

k(s)=

As+ B’

More precisely, by suitable choice of B we obtain any desired initial condition
k (0) except k(0) = 0—the solution with this initial condition is simply & = 0.
But &(0) # 0 by assumption, so our k has the above form. <

6. COROLLARY. Let p be a parabolic point on a flat surface M immersed
in R?. Then there is a unique straight line L, through p such that the compo-
nent Cp of M N L, which contains p is an interval (possibly infinite) with p in
its interior. All the points of C, are also parabolic. Moreover, € cannot end
in M; that is, if C, has an endpoint ¢, then ¢ is not in M.
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PROOF. Existence of L, follows from Proposition 4, and uniqueness is obvi-
ous,* since there cannot be two distinct asymptotic directions at p. If there
were non-parabolic points of Cp, then one of them would be an endpoint of
the interval O, of Lemma 5. If this point is ¢ = ¢(so), then we would have

0 = ka(q) = ka(c(s0)) slgrslo 1B

which is impossible. Thus all points of C, are parabolic, and Cp, = Op. Simi-
larly, if Cp had an endpoint ¢ € M, then k2(q) could not be 0, so ¢ would also
be a parabolic point, and a neighborhood of g would be a ruled surface. From
this it is clear that Cp could be extended to include ¢ in its interior, which gives
a contradiction. #s

Once we have this Corollary, the next two follow by completely elementary
argumentation.

7. COROLLARY. Let M be a flat surface immersed in R?, and let p € M be
a planar point which is a limit of parabolic points p,. Then the conclusion of
Corollary 6 still holds, except that all points of Cp are now planar points which
are limits of parabolic points.

PROOF. Some subsequence of the straight lines Lp, have a limiting direction.
Let L, be the straight line through p with this limiting direction. The com-
ponents Cp, have p, in their interior; moreover, Corollary 6 shows that the
lengths of the Cp, are bounded away from 0 in each direction from p,. It fol-
lows that Cp has p in its interior. The assertion about endpoints of Cp is an
immediate consequence of the same property for the Cp,. It is also clear that all
points of C, are limits of parabolic points, since all points of each Cp,, are para-
bolic. If some point of Cp, itself were a parabolic point, then, by Corollary 6, all
points of Cp would be parabolic points, including p itself, a contradiction. To
prove uniqueness, notice that another straight line L” through p would have to
intersect Cp, for large enough #; thus L’ would contain parabolic points, so all
points on L" would be parabolic points, including p itself, a contradiction. ¢

*A “counterexample” is shown in the figure on the right: since
we are dealing with immersed surfaces, the uniqueness has to ‘
be given a careful formulation, which is left to the reader. AN

We will also be somewhat sloppy about such questions in the
sequel, since the precise statements are always clear, but irri-

tatingly messy to state.
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8. COROLLARY. Every point p of a flat surface M immersed in R? is con-
tained in the interior of some line segment lying in M. This segment is unique
unless some neighborhood of p is a plane, and the only segments which can
end in M are those whose interior points are of this type.

R. Malz likes to point out that this result has a very important application
in everyday life. If one holds a piece of paper in the shape of a cylinder, then

4 %

it will stay stff even if it is very long; however, as soon as it is allowed to be
planar, it will flop down under gravity. That is why people always curl up a pile
of papers when they try to align it by tapping it on a desk top.
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At this point it is almost clear that a complete flat surface M immersed in R?
must be a generalized cylinder. For an open dense subset of M will be a union
of pieces of planes, cylinders, cones and tangent developables, where we can
arrange for the latter 3 types to contain only parabolic points. Because of com-
pleteness, Corollaries 6 and 7 show that the generators of these cylinders, cones,
and tangent developables must be infinite straight lines. But in the case of cones
and tangent developables this 1s simply impossible, for there would definitely be
singularities at the vertex or edge of regression. So an open dense subset of M
consists of cylinders (some possibly degenerating to planes). It seems fairly clear
that these cylinders must all have parallel generators if they and a nowhere
dense closed set are somehow going to make up a smooth surface M; but prov-
ing this might become quite sticky. Fortunately, there is a direct proof of the
global result which makes no use whatsoever of the classical local classification.

9. THEOREM. If M is a complete flat surface and f: M — R? is an iso-
metric immersion, then f(M) C R? is a generalized cylinder.

FIRST PROOF. We can assume that M is simply-connected (by applying the
result to f om where 7: M — M is the universal covering space). Then
(Problem 1-5) M is isometric to R?, with its usual Riemannian metric.

We claim first that if f(M) is not simply a plane in R?, then for every point
P € M there 1s a unique infinite straight line L, through p which is contained in
S(M). Corollaries 6 and 7, together with completeness, show that this is true
if p 1s parabolic or a limit of parabolic points. Now consider a pomnt p € f(M)
which has a whole neighborhood contained in a plane P. Let Q@ C P be the
component of f(M)N P containing p. If Q isnotall of P, let ¢ be a boundary
point of Q in P such that all points of the segment pq other than ¢ itself lie 1n
the interior of Q (relative to P). The point ¢ must lie in f(M), by completeness,

bg
’,1/
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s0 ¢ is a planar point which is a limit point of parabolic points. Therefore ¢ is
on a unique straight line L, in f(M). The ine L; must lie in P, since P is
the tangent space of ¢, by continuity of the tangent spaces; moreover, all points
of L4 are planar points which are limits of parabolic points.

We claim that all points between p and L, lie in Q also. Otherwise, there is
a point r between p and L4 such that all points of pr are in P, but r is also a
limit of parabolic points.

There is a corresponding line L,, and it must be parallel to L, since points
on Ly and L, have only one straight hine passing through them. Thus L,
intersects pg at r’. Then r’ is also a limit of parabolic points, which is absurd,
since r’ is in the interior of Q, a component of M N P.

The same arguments may be apphed if there are any boundary points of Q
on the other side of p. Consequently, either Q = P, or Q is the part of P
bounded by Lg, or Q 1s the part of P bounded by two parallel lines Ly, Lg.
Leaving aside the case where Q = P (which occurs only if f(M) = P), we
see that there is a unique infinite straight line through p in M, namely the one
parallel to Ly [and Lg]. This proves our claim.

Since f is an isometry, each L, is the image under f of a geodesic (or possibly
many geodesics) in R2; these geodesics are just ordinary straight lines. In this
family of straight lines, distinct lines are disjoint, so our family 1s the set of lines
in R? parallel to a fixed line; for convenience we assume that they are all parallel
to the y-axis.

Now by completeness, the functions & of Lemma 5 are defined for all 5. But
this can happen only if 4 = 0. So we see that all & are constants. In other
words,

ka(x,y) = k(x)
for some function «. On the other hand, consider the map f: R? — R3 defined
by
g(x,y) = (c1(x), c2(x), ),
where ¢ is a curve in R? with curvature function k. We easily compute that the
maps f and g both have second fundamental forms with components

| =« m =0, n=0.

2

So by the fundamental theorem of surface theory. /" differs from the generalized
cylinder g by a Euclidean motion.

SECOND PROOF. We replace the last argument, using the fundamental theo-
rem of surface theory, with some very elementary geometry. Any two parallel
lines L1 and Lj of our family have the property that the function

prd(p. L)
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is constant on Ly, where d(p, L,) is the distance (in R?) from p to L. Since f is

an isometry, the function g +— d(q, f(L2)) must be constant on f(L;), where d
denotes the distance in f(M). Now if f(Ly) and f(L;) were skew lnes, or
lines intersecting at just one point, then the function

g — Euclidean distance from ¢ to f(L2)
would — 00 as ¢ — oo along L;. Since
J(q, f(L»)) > Euclidean distance from g to f(L>),

the same would be true for d, so d could not be constant. Thus f(L;) and
/(L) must be parallel (or equal). So f(M) is a generalized cylinder.

THIRD PROOF. This time we reduce almost everything to elementary geom-
etry. We merely note that either all points of our surface are planar points, or
by Corollaries 6 and 7, and completeness, some straight line of R? maps to a
straight line n R?; for simplicity we assume that (0, y) — (0, y,0). Consider
first a point (x,0) of R2. Its distance from (0,d) is v x2 + d?2. Since this must
be the distance from f(x,0) to f(0,d) in f(M), the point f(x,0) must lie in

the Euclidean ball around (0, d,0) of radius v/ x2 + d2. Similarly, f(x,0) must

(0,d) ¢

w0

lie in the Euclidean ball around (0, —d, 0) of radius v x2 + d2. The intersection

of these two balls is a lens-shaped region of height 2(vx2 + d% — d). Since this
— 0 as d — oo, the point f(x,0) must lie in the plane y = 0.
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Now the same argument shows that f(x, yo) must lie in the plane y = y,.

Y

»(x, Vo)

Yo
f(x,0)e

(x,0)

But f(x, yo) must also lie in the Euclidean ball of radius yo around f(x,0). So
f(x, yo) must be on the line through f(x,0) parallel to the y-axis. &

The remainder of this chapter is devoted to the proof of Hilbert’s theorem
that there are no complete surfaces of constant negative curvature K immersed
in R*. There is no loss of generality in considering only the case K = —1, since
similarities of R? multiply K by a (positive) constant. We will actually give two
proofs of this result. The second is related to, but considerably simpler than,
the original proof of Hilbert [1], while the first is an alternative to Hilbert’s ar-
gument, due to Holmgren [1]. The proofs depend on several classical formulas
for surfaces of constant negative curvature, so in each case a few preparatory
results are in order.

10. LEMMA. Let M be a 2-dimensional immersed submanifold of R* with
constant curvature K < 0. Then for every point p € M there 1s a diffeomor-
phism

g3,(_€,f9) X (—8’8) - M’
£(0,0) = p,
whose parameter curves are asymptotic curves parameterized by arclength.

A CLASSICAL PROOF. In Addendum 1 to Chapter 4 we found that for every
p € M there is a diffeomorphism g: (—¢,¢€) x (—¢,¢) - M, with g(0,0) = p,
such that the parameter curves are asymptotic curves. By a suitable repa-
rameterization we can clearly arrange that the two parameter curves through
p = g(0,0) are parameterized by arclength. Thus we have

) E(s,00=1, G(0,1)=1
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We now claim that all parameter curves are parameterized by arclength. 'To
prove this we note that the Codazzi-Mainardi equations on page 217 can be
written

[{(EG — F*+ FE, — EG/| ,

2) =2 EG - F? "
(), — 2 [{(EG - F*)2+ FG, - GE;] ,
m )2 = EG — F2 m-.
But we also have
In —m? —m?

K= =
EG-F? EG-F?

so that
m? = (—K)EG — F?), where K is a constant.

Substituting in the first equation of (2), we get
1
(—KWEG - F*); = 2(-K) [E(EG — F*) + FE; — EGI:I ;
which becomes simply

EG, — FE; =0.

Similarly,
-FG{+GE, =0.

Since EG — F? # 0, this set of linear equations is satisfied only if E; = 0 and
G = 0. Together with (1), this shows that £ = 1 and G = 1 everywhere.

SECOND PROOF. The desired result obviously amounts to the following: If Y;
and Y3 are linearly independent unit asymptotic vector fields, then [Y;, Y2] = 0.

First consider an adopted orthonormal moving frame (X, X2, X3) for which
X, and X, are principal directions, with corresponding principal curvatures ki
and k3. Then the forms ¥} satisfy

v =ki6'.
We also have the Codazzi-Mainardi equations
Ay =i AY3.  dys = —of AV
Taking the exterior derivative of the equation Vi = k16" thus yields

dky A0 + ki dB' = dy} = wf A Y3 = kaof A6,
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so that
dk] /\01 + k1w12 /\02 =k2(1)12 /\02.

Applying this to (X}, X3), we find that
—Xa(ky) = (k2 — k1) - 0} (X)),

Similarly, exterior differentiation of the equation ¥ = k26?2 leads to
—Xi(kz) = (ka — k1) - wi(X2).

Thus

2 X2(k1)

) w? = g Mk g

Tk -k ko —ky

Now consider a unit vector field
o Xy + oz Xy,
with
2) (01)? + (a2)’ = L.
For this to be an asymptotic vector field we need
ki(an)? + ka(az)? = 0.

For simplicity we now take the case K = —1, so that k1k; = —1. Then a; X1 +
a2 X> 1s asymptotic if and only if

k k
(0!2)2=—k—1(0!1)2 = (al)z-k—‘(mf:l by (2)
2 2

= (0)’ =

= T h since kik; = —1.
‘1

So our unit asymptotic vector fields must be

Y] = :tCI]X] :tCIzXz
Yo = o1 X) £ a2X>,
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where the o; are given by
1

\/1+k,'2.

It is convenient to note that we can write equation (1) in terms of the «; as

) w}'ﬂ = Mgi - Mgi_

o oj

) o =

Now to show that [Y}, Y2] = 0 we just need to show that [a3 X1, a2 X2] = 0.
But we have (see pg. 1.215)

0 ([or X1, 02 Xa]) = oy X1 (B (@2.X2)) — a2 X2 (6 (a1 X1)) — dO' (01 X1, 22 X2)

= 8200 X1(02) — SnneaXa(o) + Y (@] A 67) (a1 X, 02X2)
J
= 8ppay Xy (or2) — Sy Xa(ory)
+ 8i02 Xa(ay) — Sipay Xy (@2) using (4)

°,
= 0 °oe

For any 2-dimensional Riemannian manifold M (not necessarily immersed
n R3), an immersion g : (a,b) x (¢,d) — M is called a Tschebyscheff net if all
parameter curves are parameterized by arclength. If we think of the domain
(a,b) x (c,d) as a piece of cloth woven from fibres parallel to the axes, then the
immersion g doesn’t stretch any fibres. So the surface can be outfitted in a sexy
tight fitting suit if we can find Tschebyscheff nets around each point (we might
have to sew a lot of pieces together). Lemma 10 shows that this can always be
done on a submanifold of R with constant negative curvature. The notion of
a Tschebyscheff net is an intrinsic one, however, and our next result 15 also.

11. LEMMA. Let M be a 2-dimensional Riemannian manifold and g: (a,b) %
(¢c,d) — M a Tschebyscheff net. Define w: (a,b) x (¢c,d) — R as follows:
w(so, %) is the unique number with 0 < w(so, %) < 7 such that w(so, o) 15 an
angle between

dg (s, to) dg(so, 1)
R and
ds s=50 dt t=to
Then w satisfies the differential equation
82
7Y _ (—K)simow.

dsot



Complete Surfaces of Constant Curvature 251

PROOF. We have £E =G =1, and

F = cosw, W=+vEG- F?=shnho.

From the equation in Problem 4-13 we obtain

1 [0 [F d [ F>
K-m_&(w)%(w)]

™ . dow . dw
__l__ —?— —smwa—s +i —SIH(L)E
T2W | ot w ds w
() (e
" 2sinw | 9t as as ot

3w

_ dsot o
T sine

We are now ready to prove the theorem, which still requires quite a bit of ar-
gument. We will use the term asymptotic Tschebyscheff net for a Tschebyscheff
net of the sort constructed in Lemma 10, with all parameter curves being asymp-
totic curves.

12. THEOREM. A complete surface M with constant curvature K = —1
cannot be immersed in R®.

PROOF. The proof depends on establishing two facts:

(A) Suppose that M could be immersed in R®. Then there would be a
Tschebyscheff net f: R? — M, from the whole plane to M, and the
function w, defined on all of R?, which gives the angle between the first
and second parameter lines would satisfy

9w
dsot

=sinw, O<w<m.

(B) There is no function @: R?> — R satisfying

7o
dso¢

where C > 0 is any constant.

= Csinw, O0<w<m,
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PROOF OF (A). Select a point pg € M. Let c: R — M be an asymptotic curve,
parameterized by arclength, with ¢(0) = po; since ¢ is locally an integral curve
of a unit vector field, it can be defined on all of R since M is complete [compare
Problem 1-5(c)]. Let X(0) be a unit asymptotic vector at po which is linearly
independent of ¢/(0), and let X(¢) be the unique continuous vector field X
along ¢ such that X(¢) € M, is a unit asymptotic vector linearly independent

X(0)

Po

of ¢/(t). The vector field X along ¢ is just a device to enable us to distinguish a
direction for each parameter value of ¢. We now define f: R? — M as follows:

where y; is the unique asymptotic
f(s,t) = ys (1), curve, parameterized by arclength,
with y4(0) = ¢(s) and y5'(0) = X(s).

What we have to show is that each curve s — f(s,7) is an asymptotic curve.
This depends on the existence, as guaranteed by Lemma 10, of asymptotic
Tschebyscheff nets g: (—¢&,&) x (—¢,&) — M around any point. From the very
definition of f the following at least is clear:

Observation: If for some ¢ € (—&,¢) the parameter curve s — g(s,f)

lies along a parameter curve s — f(s,7), then all parameter curves
s > g(s, 1) lie along parameter curves of f.

s> g(s, 1)

¢

Po
Vs
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Now for any (sg,7) we can find a finite number of asymptotic Tschebyscheff
nets g1, ..., gk whose images cover { f(so,7): 0 <t < to}. Arranging the g; as
in the picture below, so that the images of consecutive ones overlap, noting that

this much of the f parameter
curve is an asymptotic curve

1

1

this is an asymptotic curve

image g3 ————» ﬂ
this is an asymptotic curve

Vs

s > f(5,0) is an asymptotic curve by definition, and applying the Observation
repeatedly, we see that s — f(s,1) is an asymptotic curve for s sufficiently
close to s9, which is what we wanted.

Our equation for w then follows immediately from Lemma 11.

PROOF OF (B). Suppose we had a function w: R? — R satisfying

2w

=Csinw, 0<w<m,

tor a constant C > 0, and hence, in particular,

2w

7Y o
asor

(2)
This implies that dw/ds is increasing as a function of 1, so that

]
(3) —w(s,t) > a—w(s,O) for t > 0.
ds as
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Consequently, for ¢ > 0 we have

b b
f a—w(s,t)a's > f a—w—(s,O) ds,
a 0s a 0s

) w(b, 1) — wla,t) > w(b,0) — wla,o) fort >0anda < b.

so that

Now we can’t have dw/ds = 0 everywhere, so we can assume (changing our
coordinates by a translation) that dw/ds(0,0) # 0. Since the function (s,¢) —
w(—s,—t) also satisfies (1), we can even assume that dw/ds(0,0) > 0. Choose
three fixed numbers

, 9
(5) O<s; <sp<s3  with a—w(s,0)>0 for 0 <s <s3,
S

and let

. {w(sa,O)—w(sz,O)
£ = min
w(s1,0) — w(0,0).

81 82 83

P p—— _,_/'
 grows by
at least ¢

Then for all £ > 0 and all s € [0, 53] we have the following:

w(s,1) is increasing in s, by (3) and (5)
w(s,t) —w(0,f) > ¢ }

by (4) and the definition of &
w(s3,t) —w(sy,t) > ¢

0 < w(s,t)<m.
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Putting these together, we conclude that

e<w(s,t)<m—¢ for s € [s1,52] and t > 0,
and hence
(6) sinw(s,t) > sine for s € [s1,52] and ¢ = 0.

But suppose we integrate equation (1) over the rectangle [sy, s2] x [0, T]. We
obtain

T psa T ps2 azw
C/ / sin w(s, 1) ds dt =/ / —— ds dt
0 Js; 0 Js dsot

= [w(s2, T) — w(s1, T) — w(s2,0) + w(s1,0)],

or
T pso
w(s2, T) — w(s1, T) = w(s2,0) — w(s1,0) + C/ / sinw(s,t)ds dt
0 Jsy
> w(s2,0) — w(s1,0) + CT(s2 — 1) sin g, by (6).
Taking T large enough, we get a contradiction, since the left side 1s < 7. <>

For the second proof of Hilbert’s theorem, we need an observation which
follows directly from Lemma 11.

13. LEMMA (HAZZIDAKIS’ FORMULA). Let M be a 2-dimensional Rie-
mannian manifold of constant curvature K < 0, and let g: (a,b) x (¢c,d) > M
be a TschebyschefT net. Then any quadrilateral Q formed by parameter curves
has area

where «; € (0, ) are the interior angles of Q.
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PROOF. Introducing the function w of Lemma 11, we have

dA =Wds A dt =sinwds A dt

1 dw
p o L@
e = —p e

So

area(Q):f dA:f sinwds A dt
e e

1 92
P9 a5 Ad

~ —K J, dsor

1y 82
——ds t
[ 5

= K[w(Szafz) —w(s1, ) —w(s2, 1) + wls, )]

o
T —K

4
w(Ze )
=— o —2m ). %
—-K\i5

[az — (1 —ag) — (0 —a2) + 1]

On the other hand, consider the upper half-plane #? C R? with the Rie-

mannian metric
dx @dx +dy ®dy

y?

This is a complete 2-dimensional Riemannian manifold of constant curvature

K = —1 (see pg. I1. 301 and Problem 1.9-41). We have

(,)=

1
¥

=vVEG - Fldxndy = —-d\ Ady,

so the total area of F#2 is

[ s
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Thus Lemma 13 shows that we cannot parameterize all of #2 by a Tschebyscheff
net. This is the basis of our second proof of

12. THEOREM. A complete surface M of constant curvature K = —1 cannot
be immersed in R?.

PROOF. As in the proof of Theorem 9, we can assume that M is simply-
connected. Then (Problem 1-5) M is isometric to (F2, (. ).

We claim first that there are two linearly independent unit asymptotic vector
fields Y, Y> defined on all of M. The proof uses the fact that M is simply-con-
nected, and follows a standard procedure. We arbitrarily select (Y1(po), Y2(po))
for some po € M. Then for every curve ¢: [0,1] > M with ¢(0) = po, there will
be a unique possible continuous choice of (Y1(c(¢)), Ya(c(1))) for all r € [0, 1]
which extends (Y1(po), Ya(po)). If € is another such curve with corresponding

(Yi(c(0)), Ya(c(1))), and if moreover ¢(1) = ¢(1) = ¢, then Yi(g) = Yi(q); the
proof uses the usual argument involving a contraction to the constant path at po
of the curve ¢ followed by ¢ in the reverse direction. A nicer argument 1s the
following. For each p there are 4 possible choices for Y (p), and then 2 possible
choices for Ya(p), thus 8 possible choices for (Y1(p), Y2(p)). The set of all such
pairs, for all p € M, obviously forms an 8-fold covering space of M. Since M is
simply-connected, this covering space consists of 8 components; any component
gives us the desired pair of vector fields.

We now claim that the Tschebyscheff net /1 R* — M which we constructed
in the first proof is actually a diffeomorphism. To prove this, we first describe f a
littde differently. Let {¢!} be the 1-parameter group of diffeomorphisms gener-
ated by Y; (recall this means that ¢ — ¢! (p) is the integral curve of ¥; through p,
for each p); the ¢! can be defined for all 1 € R since M 1is complete and Y;

are unit vector fields (as in our first proof). We now pick a point po € M and
define

(1) S(s,1) = ¢ ($3(Po)).
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Since [Y],Y>] = 0 (Lemma 10), the l-parameter groups ¢',¢? commute
(Lemma I.5-13), so we easily find that

(2) fls 45t +1) =l (L (f(s,0)).

We claim first that / is onto M. Otherwise, there is a point ¢ ¢ f(R?)
with ¢ on the boundary of f(R?). Now there is an asymptotic Tschebyschefl
net g: (—&,8) x (—&,6) > M with g(0,0) = g, and there is some point r €

f(R?) ‘ image g
5

(image g) N f(R?). Then ¢ must be of the form

q= ¢,2f(¢slf(”)) for some s, ¢
= ¢,2f(¢slf(f(s, 0n)) for some s, ¢
= fls+s,t+1)  by(2),

so actually ¢ € f(R?), a contradiction.

Now we claim that f: R?> — M is actually a covering map. For any point
g € M, choose an asymptotic Tschebyschefl net g: (=2s,2¢) x (=2¢,2¢) > M
with g(0,0) = ¢ such that g is a diffcomorphism onto some open subset V- C M.
We can assume that the s [and ¢] parameter curves of g lie along the s [and /]
parameter curves of f. Suppose that (s,t) € f~1(g). Consider the map

¢:V > (5—28,5+28)><(t——28,t+28)ClR2

defined by

g(s' ) > (s+ st +1).
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Using equation (2), we see that f: (s — 2&,5 + 2¢) X (t—2e,t +2¢) > Visa
diffeomorphism with inverse ¢. Now let

W= g((_e’ 8) X (_8’ 8))
and for each (s,1) € R? let
W =(—8&s5+e)x({t—gt+e).

We claim that
o= U Wen
(s,0)ef~g)
In fact, if

(s,0) e fTH(W),

then we have
fs,0) =g(s',t)y  forsome (s,1') € (—g,8) x (—£,¢),
and by equation (2),
fls—s,t—1')=¢2 (¢l (f(5,1))
=2, (¢l (g(s',1"))
=4,

which proves the claim. Since each of the W ) 1s mapped diffeomorphically
onto W, the proof that f is a covering map will be complete once we show
that any two distinct such rectangles W(s, 1) and W, 1) are disjoint. Now if
Wi N Wisy, 1) # @, then

(s2.12) € (51 — 28,51 + 28) x (t1 — 2&,4; + 2¢).

But we know that f is a diffeomorphism on this rectangle. Since f(s1,f) =
g = f(s2,12), this means that (s1,;) = (s2,), so that Wisy.1) and W, ) are
actually the same. Thus f is indeed a covering map.

Now by the simple-connectivity of M we conclude that £ is actually a dif-
feomorphism. Consequently, we can exhaust M by quadrilaterals formed by
the parameter curves of f. Lemma 13 then implies that M has area < 2m,
while we computed that M has infinite area. This contradiction establishes the
theorem. o
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It is easy to find a complete surface M C R* with non-constant curvature
K < 0 everywhere—for example, the elliptic hyperboloid of one sheet has this
property. But in this example K comes arbitrarily close to 0. In 1964, Efimov (1]
proved, by a lengthy ingenious argument, using no particularly sophisticated
machinery, that there are no complete surfaces M C R? with curvature K < 0
bounded away from 0; an exposition of the proof may be found in Klotz [2].



CHAPTER 6

THE GAUSS-BONNET THEOREM
AND RELATED TOPICS

In Volume IT we presented Gauss’ proof that if AABC is a geodesic triangle
on a surface with Gaussian curvature K, then

C

/ KdA=/A+/B+ £C —m.
AABC B

A

At that time we also cast a suspicious glance at Stokes’ Theorem, which seemed
to be lurking in the background, and promised to present a proof which would
implicate it more fully. We are now in a position to redeemn that pledge. It is
almost a foregone conclusion that moving frames will play a leading role in the
proceedings, since this is the only treatment of curvature in which differential
forms appear explicitly. Actually, we are going to generalize Gauss’ result, and
in two quite different directions. On the one hand, we will allow polygons with
any number of sides, and we will not require the sides to be geodesics. On the
other hand, we will also have something to say about the integral of K over a
whole surface. We begin much more modestly, however, with quite elementary
considerations.

Suppose that X = (X7, X2) and X’ = (X’;, X"2) arc two orthonormal moving
frames on a 2-dimensional Riemannian manifold M. We have already found
the relationship between the matrices of l-forms w = (a)}’:) and o’ = (w’j-)
associated to these moving frames: If X’ = X - a for an orthonormal matrix
function a, then (see pg. I11.280) we have

(l) w' =a""da+a 'wa.

Of course, in a 2-dimensional manifold this relationship can be expressed much
more simply. If X(p) and X'(p) are similarly oriented. then the matrix a(p)

261
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is just

cosf(p) smb(p)
a(p) = ( ) )
—sinf(p) cosO(p)

where #(p) is the oriented angle between X;(p) and X'1(p).

Usually we define the “angle” between two vectors to be a number between
—m and n, but then the function 6 need not be continuous. Locally, we can
make 6 differentiable by allowing other values of 6. In the next result, it does
not matter that this € is not well-defined, because the form d6 still is.

1. PROPOSITION. Let X, X> and X';, X', be two similarly oriented or-
thonormal moving frames on a 2-dimensional Riemannian manifold M, and
let w?, '3 be the corresponding connection forms. Let 6 be a differentiable
choice of the angle between X} and X';. Then

w'? = 0} +db.

PROOF. ltis easily checked that this is precisely what equation (1) comes down
to. It is probably also a good exercise to derive the whole thing from scratch,
using properties of V, or by reproving Proposition 1I. 7-14 for 2-manifolds. +*

Now consider a curve ¢: [a,b] — M which lies in a region on which we
have an orthonormal moving frame X}, X2. Suppose that V is a unit vector
field along ¢. We can then define the angle between V and X) in an even
more precise manner, based on the constructions on pp. I1.16—-18. We first
define a map a: [a,b] — S! by letting a(¢) be the image of V(¢) under the
unique linear map M.y — R? which takes X;(c(¢)) to e;. We then have, by

X
Vi)

7
N

X

Proposition I1.1-5, a continuous map ¢ : [a,b] — R with

a(t) = (cos@(1),sin (1)),
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and any two such maps differ by a multiple of 2. We will refer to any such ¢
as a continuous choice of the angle between Xj and V. It is easy to see that ¢
is actually C® if V is a C* vector field along c.

2. COROLLARY. Let M be a 2-dimensional Riemannian manifold, and let
¢: [a,b] > M be an immersed curve which lies in a region on which we have
a positively oriented orthonormal moving frame Xj, X2. Let V be a C* unit
vector field along ¢, and let ¢ be a continuous choice of the angle between X,
and V. Then V is parallel along ¢ if and only if

wi (' (1)) + ¢’ (1) =0.

PROOF. Locally we can find an orthonormal moving frame X I, X'y oriented
similarly to X}, X2, with X’y = V along ¢. We can choose the angle 6(p)
between X'1(p) and X;(p) so that

0(c(t)) = ().
Then V is parallel along ¢ if and only if

0= (Vo X', X'2) = o'5(c' (1))
= wi(c'(t)) + dO(c' (1)) by Proposition 1
=i (') + @ 0 0) ()

= @i (1)) + (). %

In Chapter 4 we defined the geodesic curvature kg of a curve ¢ in an oriented
surface M C R®. We also noted that «, is intrinsic. Indeed, for any arclength
parameterized curve ¢ in any Riemannian manifold (M, { , )) we can define
Kg (> 0) as the norm of Dc'(s)/ds; if M is an oriented 2-dimensional Rie-
mannian manifold, then we defined the signed geodesic curvature kg by

D !
@m=<;?mm)

where u(s) € M) is the unit vector perpendicular to ¢'(s) with (¢’(s),u(s))
positively oriented.
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3. COROLLARY. Let M be an oriented 2-dimensional Riemannian mani-
fold, and let ¢: [a,b] — M be a curve, parameterized by arclength, which les
in a region on which we have a positively oriented orthonormal moving frame
X1, X». Let ¢ be a continuous choice of the angle between X; and ¢’(s). Then
the signed geodesic curvature kg of ¢ 1s given by

Kg(s) = @i (c'(5)) + ¢ (5).

PROOF. Locally we can find a positively oriented orthonormal moving frame
X'1, X'> with X’} = ¢ along ¢. So we can choose the angle 8(p) between
g g
X'1(p) and X;(p) so that
0(c(s)) = ¢(s).

Then

Kg(s) = (Vxr, X1, X2)(c(5)) = &5 (' (s))
= wi(c'(s)) + db(c'(s)) by Proposition 1
= 07 (c'(s)) + ¢'(s).

Each of our Corollaries can be used to obtain an interesting result. The first
theorem partially fulfills a promise made on pg. 11. 243, for it gives a quantitative
description of the fact that parallel translation along a closed curve generally
does not bring a vector back to itself.

4, THEOREM. Let M be an oriented 2-dimensional Riemannian manifold,
with Gaussian curvature K, and volume element dA. L.et N C M be a compact
2-dimensional manifold-with-boundary whose boundary 0N 1s connected, let
¢: [a,b] — 3N be a closed curve such that ¢(¢) is positively oriented (with
respect to the induced orientation on dN), and let V' be a parallel unit vector
field along ¢. If X}, X is a positively oriented moving frame defined on N, and
¢: [a,b] — R is a continuous choice of the angle between X} and V, then

1%
\6b) - p(@
(b) - pla) = f K da.
N
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PROOF. By the equations on page 69 we have

deA:fKe‘wZ:—f dwi
N N N

= —/ w? by Stokes’ Theorem
ON
b

= _/ wi(c'(1)) dt
a

b
—_—/ ' (1) dt by Corollary 2

= p(b) — pla). o

Notice that in order to measure the change in V eflected by parallel transla-
tion, we made use of an orthonormal moving frame X}, X defined on all of N.
Such a moving frame always exists, because a unit vector field X; exists on the
bounded manifold N (see Problem 1.11-13(¢)), and X3 is then determined by the
orientation.

In our next theorem, the region N must be very special.

5. THEOREM. Let M be an oriented 2-dimensional Riemannian manifold,
with Gaussian curvature K, and volume element dA. Let N C M be a compact
2-dimensional manifold-with-boundary which is diffeomorphic to a subset of
R2, and whose boundary is connected. Let ds be the volume element of dN
(determined by the induced Riemannian metric and induced orientation of
dN), and let k; be the signed geodesic curvature of dN (on which we have a
direction determined by the induced orientation). Then

/ KdA:—/ Kgds + 2m.
N IN

PROOF. Because of our hypotheses on N, we might as well assume that M
is an open subset of R2. On M we define a positively oriented orthonormal
moving frame X, Xz by requiring X to be a positive multiple of 3/9x!'. Let
¢: [a,b] = 9N be a closed curve, parameterized by arclength o, such that ¢'(o)
is positively oriented, and let ¢ be a continuous choice of the angle between X
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and ¢’(g). Then

deA:fKGlAGZ fdw,_ f wi
N N

= —/ w; 2(¢'(0)) do
b b
= —f kg(o)do + f ¢'(0)do by Corollary 3

= —f Kg ds + ¢(b) — p(a).
aN

To complete the proof, we have to show that ¢(b) — ¢(a) = 2x. This is done
by noting three things.

(1) The number ¢(b) — ¢(a) is a multiple of 27, since ¢(b) and ¢(a) are both
choices of the angle for ¢'(a) = ¢/(b).

(2) Let { , ) be the Riemannian metric on M, and let { , ) be the usual Rie-
mannian metric on R?. It is easily checked that for each ¢ € [0, 1], the tensor

( 5 >t=t( 5 >+(1_t)( ’)

is also a Riemannian metric. Let X', X5 be a positively oriented moving frame
which is orthonormal with respect to { , )*, and for which X’ is a positive
multiple of 3/3x'; then let ¢’ be a continuous choice of the angle between
X' and ¢'(0)/||c"(0) . The choice ¢’ clearly depends continuously on ¢ (if we
make ¢ (a) vary continuously). Consequently, ¢’ (b) — ¢’ (a) varies continuously
with £. Since it is always a multiple of 27, it must be constant.

(3) When 1 = 0, we have X/} = 3/3x" and X, = 3/dx2, and consequently ¢°
is just a choice of the angle between the x-axis and ¢’. So #°(b) — ¢°(a) is the
total curvature of ¢, as defined on pg. 11.18. By the Hopf Umlaufsatz (Theorem
I1.1-7), this total curvature is 2. &

We would like to generalize Theorem 5 slightly, so that the boundary of N
need not be smooth, but only piecewise smooth. The proofitself will go through
almost precisely as before, and the real problem is to formulate the definitions
and state the results correctly (something almost no one ever bothers to do).
We will sav that a compact 2-dimensional manifold-with-boundary N C M isa
polygon if 9N is connected and if there is a simple closed curve c: [a,b] > N
such that ¢ is a smooth imbedding on each interval [t;_y,#] of some partition
a =1ty < - < tyy1 = b. Thus c'(¢) exists for all ¢ # ¢;, and the right and
left hand derivatives ¢/(t;7) and ¢/(¢;7) exist for all #. It will be convenient to
work only with curves ¢ such that ¢/(b7) = ¢’(a*). The vertices of ¢ will then
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be t1,...,ty; for each such vertex f;, we would like to define its interior angle
ti € [0,27], as shown below. To do this, we first choose ¢ so that ¢(¢) is always

9
- v =
v \
D 7
(1) .
V1, V2

positively oriented. Let v; = c(tit) and v = —¢/(;7). If vy and v, do not
point in the same direction, we define

v2

t; = oriented angle (between 0 and 2r7) from v; to vs.

This still leaves us with the problem of defining ¢; when v; and vy point in
the same direction. To treat this case, let w;(¢) be the tangent vector of the
geodesic from c(#;) to c(f; + €), and let wy(e) be the tangent vector of the
geodesic from c() to c(t; — €). For sufficiently small £ > 0, the vectors w)(¢)

clt; +¢) wy(£) wi(€) clti +6)
c(ty) c(ty)
oty — e w2 (#) wa(e) i — )
and ws(¢) are nearly in the same direction, so, in particular, they do not point in
opposite directions. Therefore, the orientation of (w;(¢), w2(¢)) cannot change,
since wi(e) and wy(e) are always distinct for small . We define ¢; to be 0 if
(w1 (€). wa(e)) is positively oriented. and 2 if it is negatively oriented. [The

formula

= 1in}){0riented angle from wy (&) to wa(e)}
£
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could be used as a general definition that would work in all cases.] Now that
we have successfully defined the interior angle ¢;, we define the discontinuity §;
of ¢’ at f; by

i =m —; € [—m,m].

Remark: Tt is easy to see that if ¢ is an angle between ¢/(1,7) and some vector
X € M,(,), then ¢ + §&; is an angle between ¢/(47) and X.

6. THEOREM (THE GAUSS-BONNET FORMULA). Let M be an ori-
ented 2-dimensional Riemannian manifold, with Gaussian curvature K, and
volume element dA. Let N C M be a polygon which 1s diffeomorphic to a
subset of R2, let ds be the volume element of 3N, and let kg be its signed

geodesic curvature. Suppose that 3N has vertices t1, . . ., t,, with discontinuities
81,...,8,. Then

KdA:—f Ko ds — o +2m
J, LY

=1

= - Kgds + ti+ Q2 —n)m.
[N

i=1
PROOF. As in the proof of the previous theorem. we assume that M is an
open subset of R2, and we define X, X exactly as before. Choose the curve
¢: [a,b] = ON to be parameterized by arclength ¢, and so that ¢’(o) is posi-
tively oriented. By our Remark, we can choose ¢; : [ti1,#] — R so that each ¢;

is a continuous choice of the angle between X; and ¢'(o) on (fi—1, ), and so
that

() Giv1(li) — ¢ilti) =6 i=1,...,n.
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Then

/KdA:/KdG‘/\cwz:—/ dwf:—/ w?
N N N aN

n+1

i
= Z/ wi(c'(0)) do
=171

t; t;
/ kg(o)do — / oi'(0) doil by Corollary 3
1 L.

H
L i

n+1
3|
n+1
= — ds + i(t;) — @it
/aNKg s Emt) ¢iti—1)

:_/aN KgdS—Z5i+[¢n+1(b) — ¢1(a)], using (¥).
i=1

To complete the proof, we have to show that ¢n41(d) — ¢1(a) = 2n. We do
this by showing that the three observations in the previous proof now hold for

Pn1(b) — d1(a).
(1) and (2) are obvious.

(3) We are now dealing with a piecewise smooth simple closed curve ¢ in R2.
We want to show that

n+1 n

21 = Gup1 (B) — d1(a@) = Y dilts) — pilti-1) + ) i
i=1 i=1

To prove this generalization of the Hopf Umlaufsatz, we proceed as follows.

Draw a small circle C around O = ¢(f;). Let P = c(w;) be the last point of
c|[ti—1,4;] on C and let Q = c¢(B;) be the first point of c|[t;, t;i11] on C. The

A

oriented angle from "o-é o OP approaches (; as the radius of C approaches 0.

Also, the direction of ¢/(¢;) is nearly that of F& while the direction of ¢/(B;)
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is nearly that of _022) The picture below shows a curve ¢; from P to @ which
begins in the direction of ¢(e;), ends in the direction of ¢'(8;), and stays n-
side C except at P and Q. The total change in angle of the tangent vector ¢;’

the curve ¢; when ¢’{(a;)
—
points along PO and

. -
¢'(Bi) points along OQ

the curve ¢; in general

is easily seen to be very close to §; = m — ;. For each i, let us replace the por-
tion of ¢ between @; and B; by the curve ¢;. If the circles C are small enough
(so that curve does not enter the circle around ¢(#) on any interval other than
[ti—1,ti11]), then the new curve, ¢, is simple. The total change in angle of the
tangent vector ¢’ is therefore 27, by the Hopf Umlaufsatz. On the other hand,
the total change along the portions ¢; adds up to something very close to ) _; &,
while the total change along the other portions adds up to something very close
to Y., ¢i(t;) — ¢i(ti—1). Therefore the number

n+1 n

Y gilt) — Giltic) + D 8i = Par1(b) — 1 (a)

i=1 i=1

must be close to 2. Therefore it must be exactly 27r. ¢

7. COROLLARY. If the sides of the polygon N in Theorem 6 are geodesics,

then ., .
fKdA=—Z(3,-+27!=Zt,-+(2——n)n.
N i=1 i=1

In particular, for a geodesic triangle we have
f KdA=u+u+u—m.
N

We are now in a position to find the integral of K dA over all of M. The first
method of doing this will use a triangulation {o;} of M by 2-simplexes o;. Tri-
angulations are defined in the “optional” Chapter 11 of Volume I (see pg. L. 426),
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and 1t 1s not easy to prove that they always exist on C* manifolds; however,
the proof for compact 2-manifolds is fairly easy (Problem 4-17). For a given
triangulation of M we will let

V = number of 0-simplexes (“vertices”)
E = number of 1-simplexes (“edges”)

F = number of 2-simplexes (“faces”).

The number
V_E+F=xM)

1s called the Euler characteristic of M. According to Theorem 1.11-5, we have
x(M) = dim H*(M) — dim H' (M) + dim H*(M),

so actually (M) does not depend on the triangulation. However, it is not
necessary to know this fact in order to follow the next proof.

8. THE GAUSS-BONNET THEOREM. Let M be a compact oriented
2-dimensional Riemannian manifold, with Gaussian curvature K, and volume
element dA. Then

/ KdA =2r - y(M).
M

PROOF. Consider a triangulation oy, ...,0F of M. Let A;, B;, Cj be the three
mterior angles of g;. Then Theorem 6 gives

F
/ KdAzZ/ KdA
M ]=1 Gj

F

F F F
=Z(/a Kgds) +D (A + B+ C) =) 3w+ o
Gj j=1 j=1 j=l

j=1
Now we note the following,

(1) The sum ) [ kg ds is 0, because each edge of the triangulation appears
twice, with opposite orientations.

%
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(2) The sum Y (A4; + Bj + C;) is 2xV, since the sum of all interior angles
occurring at each vertex is exactly 2.

N
<

(3) The sum — ) 3m is just —3Fn. On the other hand, we clearly have
3F = 2F, since 3F is the total number of edges of all faces, each edge
being counted twice since it is in two faces. So — ) 37w =27 (—E).

(4) The sum Y 27 is just 27 F.
Therefore, our final sum is 27(V — E + F) =2 - x(M). %

A whole slew of consequences follows immediately from this spectacular the-
orem, which expresses a differential-geometric quantity f;, K d4 in terms of a
number which has nothing at all to do with curvature, or even with a Riemann-
ian metric. Note, first of all, that we can restate our result in a way which does
not involve x(M) = dim Ho(M) — dim H'(M) + dim H?*(M). We have shown
that for any triangulation of M we have

/ KdA=2n(V —E+F).
M

Picking a fixed triangulation, this shows that f,, K d4 is independent of the
metric. On the other hand, picking a fixed metric, we obtain an “elemen-
tary” proof, without using cohomology, that V — E + F is independent of the
triangulation.

The simplest consequences of the Gauss-Bonnet Theorem involve the sign
of K on various compact oriented surfaces. All such surfaces are homeomor-
phic to the surface obtained by adding g > 0 handles to S?, and the Euler
characteristic is then given by x = 2 — 2g. The latter result may be proved as

52
torus 2-holed torus
g=0x=2

g=1x=0 g=2 x=-12
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in Problem I.11-2, or by considering triangulations (we just have to check that
V — E + F changes by —2 when we add one more handle). Therefore,

/ KdA >0 if M is homeomorphic to S?

M

/ KdA =0 if M is homeomorphic to a torus
M

/ KdA <0 if M is any other compact oriented surface.
M

It follows, 1n particular, that if there 1s a metric on a compact oriented 2-mani-
fold M with K > 0 everywhere, then M must be homeomorphic to S?. This
result 1s rather different from Theorem 2-11, because we do not assume that
the metric comes from an imbedding in R3 (whether such a metric does, in
fact, always come from an imbedding is a question which we will mention only
later, in Chapter 11). On the other hand, if there is a metric on M with K =0
everywhere, then M must be homeomorphic to the torus. As we have already
seen (pg. 11.179), such a flat metric does indeed exist on the torus. It is a good

exercise to compute that / KdA = 0 when M is the torus on page 159.

Finally, if there is a metric on M with K < 0 everywhere, then M must be
a sphere with g > 2 handles. Of course, we can never find an imbedding
of such a surface M into R® with K < 0 everywhere (by Proposition 2-8).
But there 1s, nevertheless, an abstract Riemannian metric on M which has
K < 0 everywhere; in fact, there is a Riemannian metric on M with K = —1
everywhere. The construction of such metrics 1s carried out in Addendum 1.

Our next consequence of the Gauss-Bonnet Theorem involves the notion of
the index of a vector field, as defined in Chapter I.11.

9. THEOREM. Let M be a compact oriented 2-dimensional Riemannian
manifold with Gaussian curvature K, and volume element d4. Let X be a
vector field on M with only finitely many zeros. Then

/ KdA =2m - (sum of indices of X).
M
FIRST PROOF. We just combine the Gauss-Bonnet Theorem,

/ KdA =2 y(M),
M
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with the Poincaré-Hopf Theorem (I.11-30),
x (M) = sum of indices of X.

SECOND PROOF. This proof does not involve the intermediary x(M), which
appears nowhere in the statement of the theorem, nor will a triangulation be
invoked. Let pi,..., pr be the zeros of X, and choose disjoint closed discs D;
containing p;. Each D; is diffeomorphic to D = {x € R? : |x] < 1}, and we
will let D;(e) denote the set corresponding to {x € R2: |x| < e}. Let

N(e) = M — (|J; interior D;(g)).

On N(e) there is a positively oriented orthonormal moving frame Xj, X with
X, = X/||X|. Then

KdA= —/ dwt
N(e) N(e)

=- Z/ w} by Stokes’ Theorem.
— Jab; ()

For the moment consider one particular i. Let X’1, X'> be a fixed positively ori-
ented orthonormal moving frame on D;. On D; minus a line segment we have
a differentiable choice @ of the angle between X; and X1, and by Proposition |

we have
—/ wi = / do — / w'?
aD; (&) aD; (&) aD; (&)
= (index of X at p;) —/ w'?
aD; (&)
[where '} really depends on i].

Therefore,

lim — wlz = (index of X at p;) — 0.

e=>0  JaD;(e)
Consequently,

/ KdA = lim KdA =) indexof X at p;. <
M

£—>0 N(e) 7
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Notice that the second proof of Theorem 9 reproves the fact that the sum
of the indices of a vector field X is independent of X (it also reproves the fact

that / K d A is independent of the metric). In conjunction with the proof of
M

the Gauss-Bonnet Theorem, it reproves the fact that the sum of the indices of
avector fieldis V — E + F.

In contrast to the previous consequence of the Gauss-Bonnet Theorem, in
which x(M) does not appear, in the next consequence K does not appear.

10. THEOREM. Let M C R? be a compact oriented 2-dimensional manifold,
and let v: M — S? be the normal map. Then

M
degree of v = L—)

PROOF. By the definition of deg v (pg. 1.275), we have

/ v*w:degv-/ w
M S2

for all 2-forms w on S2. Choosing w to be the volume element da of S2, this
means that

(4n)degv=/ v*(da)
M

- [ kaa
M

where K is the curvature for the induced metric. Together with the Gauss-
Bonnet Theorem, this yields the desired result. «

Just as in the case of Theorem 9, one would expect to find a proof of Theo-
rem 10 which does not use the intermediary K. In fact, the same statement can
be proved for hypersurfaces of R”, and this result played an important role in
generalizing the Gauss-Bonnet Theorem to higher dimensions (see Chapter 13).
Because the proof is differential-topological in nature, rather than differential-
geometric, it has been shunted off to Addendum 2.

Our next result is merely a curiosity, an alternative proof of Theorem 2-11
which avoids covering spaces.
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11. PROPOSITION. Let M be a compact connected 2-manifold, and let
f: M — R?® be an immersion with K(p) > 0 for all p € M. Then M is
orientable, the normal map N: M — S$? C R? is a diffeomorphism, the map
/M — R?is an imbedding, and /(M) is convex.

PROOF. Orientability of M is trivial, as in the proof of Theorem 2-11. The -
Gauss-Bonnet Theorem then shows that

2n-x(M)=f KdA > 0.
M

The only possibility is that M is homcomorphic to S2, with x(M) = 2; so

f KdA =4n.
M

Since N(M) C §? is closed (by compactness of M) and also open (as K(p) # 0
means that N is regular at p), the map N is onto S2. To prove that N is one-
one, suppose instead that N(p) = N(g) for some p # g € M. Then there is an
open set U 3 ¢ such that N(M — U) = S2. If da is the volume element on S,
then for any open set V.C M — U on which N is one-one we have

f KdA = f N*(da) = f da, since N is orientation preserving.
v v N)

It follows that

f KdA > da = 4m.
M-U S2

Therefore

deA:f K(1A+deA>4ﬂ,
M M-U U

a contradiction. So N is one-one. The remainder of the proof is the same as
for Theorem 2-11. ¢

Finally, here's a result that isn’t about surfaces at alll (For a history of this
result, see McCleary [1].)

12. THEOREM (JACOBI; 1842). Let ¢ be a closed curve in R? with noshere
vanishing curvature , and let n be its normal map, into S2. If nis a simple
closed curve on S2. then it divides $? into two regions of equal arca.
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PROOF. Let B be one of the regions into which n divides S$2, and orient
¢t [a,b] = S? so that the corresponding orientation for n coincides with the
induced orientation for dB. Theorem 5 gives

B dB

where & is the geodesic curvature of n on §2, and o is the arclength function
of m. Since S? has area 4n, it suffices to prove that the integral of kg 18 0. Now
for any arclength parameterized curve y on a surface M, the definition of its
geodesic curvature kg is

Ty"=kg v xy
where v is the normal to M. This implies that
kg = (", vxy) =" xy"v).
When y is not parameterized by arclength, we have
kg (1) = (¥ () x Y@, vy ) [ Iy ().

Applying this to our curve n on S? we obtain

/ 14 do ’
Ke(s) =(n'(s) xn (s),n(s))/(zv—) .

The Serret-Frenet formulas for ¢ allow us to write this as

d 3
kg(s) = [k(s)T(s) —K’(S)T(S)]/(d—:) ;

where « and t are the curvature and torsion of ¢. Now since

n’ = —«t + th,
we have J
7~ ()] = Vi2(s) + 22(s).
ds
So

_Kr’—/c’r do_i( ot r>d_o
Kels) = Wiz [ods T oas \MTM) g
d T
= — (arctan ;) .

do
Since ¢ is a closed curve, this gives

b T
/ Kegdo = / d (arctan —) = (.
B a K
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We will conclude this Chapter with some considerations which, although they
do not bear directly on the Gauss-Bonnet Theorem, are nevertheless related
to the integral of the curvature. As we have already noted in the proof of
Theorem 10, for an immersion i: M — R? of a compact oriented 2-mani-
fold M into R3, the integral of its curvature K is

f KdA = (4n)degN,
M

where N: M — S? is the normal map. This degree of N is simply the “signed”
number of points in N~!(p) for any regular value p € S? of N (Theorem
1.8-12). Now let us consider the actual number #(p) > 0 of points in N71(p).
We would like to look at
# - da,
S2

where da is the volume element of S?; for technical reasons we will instead

consider
f # da,
S2-C

where C is the set of critical values of N (which has measure 0 by Sard’s Theo-
rem). Notice that for some p € S2 the set N~!(p) might be infinite; but such p
are clearly contained in C and therefore do not bother us. Moreover, on §2-C
the function # is locally constant, so it is certainly continuous, and therefore the
integral makes sense. Any point of §2 — C has a neighborhood U on which #
has a constant value m and such that N™'(U) C M is the disjoint union of m
open sets Vi, ..., Viy on each of which N: Vo > U is a diffeomorphism. Since
N*(da) = K dA, we have

f da N orientation preserving, i.e., K >0
U

KdA =

17 . . ..
« —f da N orientation reversing, 1.e., K <0.
U

f |K|dA=f da.
Vo U

From this we readily see that

f |K|dA=f #da.
M s2—C

This number is called the total absolute curvature of the immersioni: M — R3.

So
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13. THEOREM. For any immersion i: M — R? of a compact oriented
2-manifold in R3, the total absolute curvature i1s > 4. In fact,

/ |K|dA=/ KdA > 4r.
{peM:K(p)>0} {peM:K(p)>0}

If the total absolute curvature of the immersion i : M — R? equals 47, then i
18 an imbedding and /(M) is convex.

PROOF. Let M’ ={p e M : K(p) > 0}. Since

/ KdA=/ KdA = N*(da),

{peM:K(p)>0} ’ M’

the first part of the theorem will certainly be proved if we show that N(M') =
S2. For any v € S2, consider a plane P C R? perpendicular to v and far away
from i (M) in the direction of v. Move this plane towards 0 until it first touches
i(M) at a point p. Then N(p) = v. Moreover, K(p) > 0, since M does not
lie on both sides of its tangent plane Py at p. This proves the first part of the
Theorem.

Now suppose that the total absolute curvature of the immersion i: M — R3
equals 47. We will first show that /(M) lies on one side of each of its tangent
planes. Suppose that M, cuts i(M), 1e., that i(M) lies on both sides of its
tangent plane M,. The points furthest from M} on each side will have normals
which are negatives of each other and both perpendicular to M,. Since N(p)
18 also perpendicular to Mp, the point v = N(p) has #(v) > 2. It is clear that
i(M) also lies on both sides of the tangent planes My for ¢ in a neighborhood U
of p. Now if K(p) # 0, then we can also assume that # is a diffeomorphism
on U, by making U smaller if necessary. Then # > 2 on the whole open set
N(U). Since we have already shown that # > | on S2, this shows that

/|K|dA=/ Hda > 4w,
M S?

a contradiction. So to complete the proof that i (M) lies on one side of Mp, we
just have to show that if K(p) = 0, then there would be some other point p
such that (M) lies on both sides of M, and also K(p) # 0.

We will first find a point p’ whose tangent plane cuts i(M) and such that p’
is not a planar point (i.e., either K(p') # 0 or p’ is a parabolic point). There is
certainly no problem doing this if there are non-planar points arbitrarily close
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to p. So suppose that all points in a neighborhood of p are planar points; the
image of this neighborhood under the immersion i then hes in M. Consider
the set of all points in M whose image lies in M), and the component of this set
which contains p. Let g be a boundary point of this component. Then M, =
My, so My also cuts i(M). Moreover, g cannot have a whole neighborhood of
planar points (for then it would not be a boundary point of the component). So
there are points p’ arbitrarily close to ¢ such that p’ is not a planar point. By
choosing p’ close enough, we can msure that M, cuts i(M).

If the point p’ which we have produced satisfies K(p') # 0, we are done.
Suppose instead that p’ is a parabolic point. Let L,/ be the straight line given
by Corollary 5-6. Consider the set of points on L, where K = 0; it is a certain
closed interval I (which might be just {p’}). Along I the tangent plane of i (M)
is constant, by Proposition 4-5. So if ¢’ 1s an endpoint of I, then My = M,
cuts i(M). Now ¢’ cannot have a whole neighborhood of parabolic points, so
there are points p arbitrarily close to ¢’ with K(p) # 0. By choosing p close
enough, we can insure that M cuts i(M).

Thus we have shown that i (M) lies on one side of each of its tangent planes.
Let C C R3 be the intersection of the closed half-spaces which are bounded by
the planes M), and contain the points of i(M). Then C is a compact convex
set with non-empty interior, and i(M) C boundary C. Since i: M — R* is
an immersion, the set (M) is both open and closed in boundary C, hence
i(M) = boundary C. By Problem 2-4, the map i: M — boundary C ~ S?
is a covering map. So i must be a homeomorphism. #

The first part of the preceding proof actually shows more than the asserted
inequality, for we clearly have strict inequality if any open subset of §? is covered
twice. Thus,

(%) / KdA=4n < N isone-oneon{pe M : K(p)> 0}
{peM:K(p)>0}

[Condition (x) can also be expressed in terms of the total absolute curvature,
for

/ |K|dA=/ KdA—/ KdA
M {peM:K(p)>0} {peM:K(p)<0}

= 2/ KdA— / KdA
{peM:K(p)>0} M

>8m — 21 - x(M) by the Gauss-Bonnet Theorem,
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with equality if and only if (x) holds.] The pictures below illustrate some im-
mersed surfaces with property (*). In each case, the region of positive curvature

Is a subset of a convex surface, bounded by convex plane curves. We will show,
by elementary but involved arguments, that this is always so.

Given any set X C R?, let H(X) be its convex hull, the smallest convex set
containing X. Elementary considerations (Problem 1) show that if X is compact,
then so is H(X). For any unit vector v € S? C R?, consider the subset of X
where the function ¢,(x) = {x, v) has its maximum value on X. This will be a
subset of the plane P perpendicular to v which is furthest from the origin and
stll hits X. It is called the “topset” of X in the direction v, and is clearly a
subset of the boundary dH(X) of H(X).

e

P

14. LEMMA. Leti: M — R?be an immersion of a compact oriented surface
satisfving (). If i(p) € dH(i(M)), then K(p) > 0; and conversely if we have
the strict inequality K(p) > 0, then i(p) € dH(i(M)).
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PROOF. The first assertion is clear, since i(M) has no support plane at i(p) if
K(p) <0, while H(i(M)) has a support plane at every point of its boundary.

For each v € S2, consider the topset of i (M) in the direction v. It s a closed
convex subset of a plane. Suppose it contains at least 2 points i(p1),i{(p2) for
p1, p2 € M. We clearly have K(p1), K(p2) = 0. Condition (*) then shows that
we must have either K(p1) =0or K(p2) =0. Thusv € N{p e M : K(p) =})
= C, say. In other words, if v € S — C, then the topset in the direction v
contains only one point. This point of 3H (i(M)) must be i(p) for some p € M,
and clearly N(p) = v and K(p) > 0. Thus

N(p e M :i(p) € 3H((M)) and K(p) = 0}) D S* = C,
which has area 47. So we cannot have K(p) > 0 for any other points p € M. ¢

The main part of the argument goes into the following

15. LEMMA. Leti: M — R? be an immersion of a compact oriented surface
satisfying (). Then for any vy € S?, the topset of /(M) in the direction vy is
connected. Moreover, if va € S? is perpendicular to v;, then the topset in the
direction v, of {the topset of i(M) in the direction v}} is connected.

PROOF. 1f the topset in the direction vy is disconnected, then it is the disjoint
union of two closed sets Wy, W», which are also closed as subsets of i (M), since
the topset is a closed set. Let Uy, Us be disjoint open neighborhoods of W)
and W, in i(M). On the compact set 9U; we have {x, vy) strictly smaller than

the value of (x,v;) for x € W;. So the same is true for all v € S? sufficiently
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close to vy. This means that for all such v, the topset of U; in the direction v
contains a point i(p) € U; not on the boundary of U;. This implies that
v = N(p), and also that K(p) > 0. So for all v in a whole neighborhood of v,
with the exception of a set of measure 0, we have v = N(p) where i(p) € U;
and K(p) > 0. Since the U; are disjoint, this contradicts condition (x).

Now consider the topset in the direction v, of the topset of i(M) in the
direction vy; say that ty, has the value y on this topset. Suppose this topset
1s disconnected and write it as the disjoint union of closed sets Wy and W,.
Choose U, U; to be disjoint open neighborhoods of Wy, W, in i(M), and let

U*={xelU:(x,1n) >y}

POix:{x,n) =y}

U] top view
T v of P Ur*
W !
W
v
U
P:{X:(X,UI):C} Wl

One part of 9U;* is the set
Ai =0U; N{x : (x,12) > y}

(indicated by a heavy line in the figure). On this compact set we have {x, v;)
strictly smaller than the value {x,v,) for x € W;. So the same is true for all
unit v close to vy. The other part of aU;* is

B =U;N{x:{x,n) = v}

On this set, the function {x, v1) takes on its maximum at some x € W;. Suppose
we choose our unit vector v in the plane spanned by v, and v,. Then for x € B;
we have

{x,v) = (constant) - {x, v;) + constant,

so the maximum still occurs on W;. Thus, for a unit vector vy close enough
to vy, and in the plane of v, and v,, the maximum of {x, ve) on dU;* occurs
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at a point x € W;. Now we can choose a curve ¢ m i (M) with ¢(0) = x and
¢'(0) = v, since the tangent plane at x is clearly the plane P which contans

the topset in the direction vy. If
vo = avy + bua, a,b >0,

then

d
I o (c(t), vo) = (¢"(0), vo)

= (vp,v9) = b > 0.

So (c(t), vo) has values greater than (c(0), vo) = (x, vo) for small ¢ > 0. Thas
shows that the maximum of (x, vo) on U;* occurs at a pomt not on the boundary.
Hence the same is true of (x, v) for all v sufficiently close to vo. As before, this
leads to a contradiction.

16. THEOREM. Let i: M — R3 be an immersion of a compact oriented
surface such that

/ KdA=4n.

{peM:K(p)>0}

Then there exist disjoint open sets U and V in M such that M is the unon of
U. V., and their comimon boundary, and such that

() K>0onU and K <0on V.

2y i: U — i(U) is a diffeomorplsm. and i(U) is an open subset of the
sct 3H (i (M)). bounded by a finite number of convex plane curves, each
plane bemg the common tangent plane of (M) along the curve.

PROOE. Consider a topset of i(M): it is of the form P N M for some support
planc P of H(i(M)). and C = PN H(i(M)) is a convex set. If this convex set

contains only one point. then this pont is in i(M). It the convex set s a line
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segment, then the endpoints must be in i(M), so the whole segment must be
in i(M), by the first part of Lemma 15. Otherwise, the convex set is bounded
by a curve I" in P. We claim that all points of I" are in i(M). This is clear for
all points of T which are extreme points of C (points which are not between
other points of C). So the only possible exceptions are points on straight line
segments of I'. But the endpoints of such segments must be in i(M), and then
the whole segment must, by the second part of Lemma 15.

It is possible that T bounds a disc on i (M), for the whole interior of T'in P
may be part of i(M). But it is not possible that T is the boundary of a disc with
K < 0 everywhere and K < 0 somewhere. For suppose it were. The disc D
would be tangent to P along I'. Let N be a surface tangent to P along T'

such that the union of N and the disc which T bounds in P is convex. Then
N’ = N U D is homeomorphic to S, but

/ KdA=/ KdA+/ KdA
’ N D

=4JT+/ KdA
D

< 4,
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a contradiction. So if the interior of I' is not part of {(M), then T must be
joined to a similar curve I/, or to several such curves. Since M is compact,

there can be only finitely many such curves I'y, ..., T¢. Then H(i(M)) minus
the discs bounded by Iy, ..., % can be taken to be i (U). <

The study of total curvature (for submanifolds of Euclidean spaces in general)
has recently grown into a little field of its own. However, almost all the results
require methods from topology or Morse Theory, which are beyond our reach.
We will end mstead with a few somewhat older results concerning immersions
i: ST — R3, orequivalently, closed curves ¢: [a,b] — R3. If ¢ is parameterized
by arclength, we define the total curvature of ¢ to be

b b
/ k(s)ds = / |t(s)] ds = length of the curve t: [a,b]—S?,

where « > 0 1s the ordinary curvature, and t is the unit tangent vector. [This
definition should not be confused with that given on pg I1.18, where we were
concerned only with plane curves, and consequently allowed « to be both pos-
itive and negative.] This total curvature can be related to the total absolute
curvature of a certain surface M in R3, the “canal surface” formed from the
union of circles which bound discs of radius & perpendicular to ¢ (the Adden-
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dum to Chapter 1.9 can be used to show that M is an immersed surface for
sufficiently small €).

17. PROPOSITION. If M is a canal surface of the closed curve c: [a,b] —
R3, then

b
1 1
/ K(s)ds:—/ IKIdAz—/ KdA.
a 4 /m 2 {peM:K{(p)>0}

PROOF. Let C = c([a,b]) and w: M — C the projection with @w(p) = ¢
when p € M is on the circle of radius & perpendicular to C at ¢. Choose a unit
vector field Z along C which is everywhere normal to C.On M —¢-Z we can

define a function ¢, with values in (0, 27), giving the angle between p and Z
on the circle w (@ (p)). If we regard the arclength s as a function on C (or
C — c(a), to be more rigorous), and also let s denote the function s o @ on M,
then (¢, s) is a coordinate system on M (minus a set of measure 0).

For each p € M, let X, be the unit vector tangent to the circle T (w(p))
at p, and let Y, be the unit vector at p which is parallel to the tangent vector
dc/ds at w(p). The normal N(p) at p points in the direction from @ (p) to p

(Problem 2), so X, and Y, are tangent to M and p. Itis easy to see that
dop(X) =1
ds(X)=0} = do nds(X.Y)=1
ds(Y) =1
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This shows that

dp nds = dA, the volume element on M.

b 2
/ |K|dA=/ |K|d¢>/\ds=/ (/ |K(¢>,s)|d¢>) ds.
M M a 0

So

Now
dN(X,) = X, since N is the identity map on the circle zv_l(zv(p)),

so if p has coordinates (¢, s), then

(n) K(¢,s) = —(dN(Y}), Y,) = —(V'y,N,Y,)
= (N(¢,5),V'y,Y) since Y is a unit vector field
= (N(¢,s), k(s) - n(s))
= «(s) - {cosine of the angle between N(¢, s) and n(s)}
= k($) - cos(¢p — ¢p), say.

(When «(s) = 0 and n(s) is undefined, this formula still holds, with an arbitrary
choice of ¢p). Thus we have

2n 2
/ |K(¢,s)| dp = K(S)/O [ cos(¢ — do)] = 4« (s),
0

b
/ lKldA:/ 4k (s) ds.
M a

The second equality can easily be deduced from the fact that

/ KdA=0.
M

which follows from the Gauss-Bonnet Theorem. since M is a torus. We can also
deduce the result directly from equation (1). for if x(s) 0. then K(¢.s) =0
for cos(¢ — ¢o) > 0. and the integral of cos(¢ — ¢g) over the subset of [0, 2]
where it is > 0 is exactly 2. o

which shows that
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18. COROLLARY (FENCHEL). The total curvature of any closed curve
¢: [a,b] = R®is > 2m. Equality holds if and only if ¢ is a plane convex
curve.

PROOF. The inequality follows directly from Theorem 13 and Proposition 17.
Now suppose that equality holds. In the proof of Theorem 13 we actually
showed that
/~ KdA > 4m,
M
where M is the set of all points p € M such that M lies on one side of M,. We
clearly also have
/z KdA > anm,
M
whereﬁ:]\?ﬂ{peM:K(p)>0}. Nowif{peM:K(p)>0}—A77é0,
then we would have :

/ KdA > 4m,
{peM:K(p)>0}

since M is a closed subset of {p € M : K(p) > 0'. This would contradict the
assumption that the total curvature of ¢ is 27, by Proposition 17. So we see that

K(p) > 0 = M lies on one side of M.

Now consider a point ¢(s) with «(s) # 0. On the circle @~ 1(c(s)) there is
an open semi-circle with K > 0. At the two endpoints of this semi-circle the
tangent planes Py, P, of M are parallel. Moreover, M lies on one side of each
of these planes, since the points are limits of points where K > 0, and hence of
points p such that M lies on one side of M,. So M lies entirely within the space
between the parallel planes Py, Pa. These planes are at distance 2e 1if M is the
canal surface formed by discs of radius &. We claim that C must lie entirely on
the plane P midway between Py and P,. For consider a point ¢(s) of C furthest

c(s)

P

from P. The tangent vector ¢’(s) must be parallel to P. which means that the
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disc of radius & through ¢(s) and perpendicular to ¢ is also perpendicular to P.
But then some points of this disc will lie outside of the region bounded by P,
and P> unless ¢(s) is on P. Thusc is a plane curve. The proof that ¢ is convex
is left to the reader. ¢

This proof, due to Voss [1], is quite different from the original proof of
Fenchel [1]. For the sake of completeness, we offer the following extremely
simple proof of Horn [1], where references to many other proofs may be found.

SECOND PROOF. We claim that if the closed curve t: [¢,b] — S2 lies in a
closed hemisphere of S2, then ¢ must be a plane curve (this implies, moreover,
that t cannot lie in an open hemisphere). Indeed, suppose that t lies in a closed
hemisphere; without loss of generality we can assume that it is the northern
hemisphere, so that the third component t3 of t satisfies 3 > 0. Then

b
0=c*b)— ) =f t3(s)ds > 0,

a

which implies that t*(s) = 0 for all 5, and hence ¢ is a plane curve. We now
appeal to a simple

19. LEMMA. If y is a closed curve on S? of length < 27, then y is contained
in some open hemisphere of S2; if y has length 27, then y is contained in some
closed hemisphere.

PROOF. Choose points p,¢q on y which divide it into two arcs, y; and ¥, of
equal length. Rotate y so that the north pole N = (0,0, 1) lies on the midpoint
of the shorter arc of the great circle joining p and ¢. If arc y, intersects the

N

equator at some point, let y; be the arc from p to ¢ which is symmetric to y,
with respect to N. Then the closed curve made up of y; and 7, has the same
length as y, and also contains two antipodal points. This shows that the length of y
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is > 27, and strict inequality holds if y, actually enters the southern hemisphere.
Since the same considerations hold for the other arc y,, the lemma is proved,
and with it the Theorem. <*

Our last result concerns knotted closed curves ¢: [a,b] — R. There are
several possible ways to define when a closed curve is knotted; for our purposes
it will be simplest to say that ¢ is unknotted if c([a,b]) is the boundary of an
imbedded disc, and knotted otherwise. The following closed curve is knotted,
although proving this fact requires considerable work.

)

90. THEOREM (FARY, MILNOR). The total curvature of a knotted closed

curve c: [a,b] — R?is > 4m.

PROOF. Suppose that the total curvature of ¢ is < 4. If M is a canal surface
of ¢, then by Proposition 17

/ |K|dA < 167 — #Hda < 16w,
M 52

where da is the volume element of S2. This means that some point v € $? is
the image of at most 3 points of M, which is equivalent to saying that ¢’(s) 15
perpendicular to v for at most 3 values of s. For simplicity, say that v = (0,0, 1).
Since

d
(Us C/(S)> = :1; (U’ C(S)>’

the function s — (v, c(s)) = (height of c(s) above (x, y)-plane) has derivative 0
for at most 3 values of s. Since the number of relative maxima or minima
of the height function is even, there must be just one of each. Therefore the
curve ¢ must consist of two arcs joining the lowest and highest points, each arc
having monotonically increasing height. Each plane parallel to the (v, y)-plane
between these lowest and highest points intersects the curve in 2 points. Joining
each such pair by the line segment between them, we obtain an imbedded disc
whose boundary is the curve. %
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ADDENDUM 1

COMPACT SURFACES WITH
CONSTANT NEGATIVE CURVATURE

In order to construct a Riemannian metric { , ) with K = —1 on any com-
pact surface M of genus g > 2, we first need to consider the standard topological
way of obtaining these surfaces. For simplicity we will work only with the ori-
ented ones. We have often used the fact that the torus, with genus g = 1, can be
obtained by identifying sides of a square according to the scheme shown below,

Ay

A2 A2

A,

In general, the “g-holed torus”, with genus g > 1, can be obtained by identify-
ing sides of a 4g-gon according to the following scheme:

Arg_
Al A2 2g—-1 Azg
Aze
A4 Al 4
1
A
A3 Az g
3
Ay As

As T Az

If your powers of visualization are much better than mine, you may be able
to literally see that this is the case. Otherwise, the following argument should
convince vou. The dashed line in the first figure below is a circle, because, as

Al A2 Al

Ay

A2 A2
As A>

A,
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a quick check shows, the required identifications of sides forces all vertices to
be identified to one point. This circle divides the identification space into two
parts. The right half of the figure shows that each part, together with the
bounding circle, is homeomorphic to a torus with an open disc removed. So
the identification space is homeomorphic to the space obtained by removing
a disc from each of two tori, and then identifying the boundary circles; hence

it is a 2-holed torus. A similar argument can be used to treat the general case,
by induction.

Now the flat metric on the torus is just obtained from the flat metric on the
square by performing the required identifications. The fact that we actually get

Ay

Az Az

Y

Ay

a Riemannian metric on the identification space depends on two circumstances:
first, the opposite sides are of equal length, and second, the sum of the angles
at the four vertices is exactly 27z, It is the failure of this second condition in
larger polygons which prevents us from getting a flat metric on the orientable
surfaces of higher genus. For surfaces with g > 1 we will construct a metric
with K = —1 by obtaining 4g-gons in the non-Euclidean plane whose angles add
up to exactly 4.

Our model for the non-Euclidean plane will be the Poincaré upper half-plane
H? = {(x,y) € R?: 3 > 0} with the Riemainian metric

_dx®dx+dr® dy

() .

this manifold has constant curvature K = —1 (compare Problem 1.9-41 and
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pg. I1.301). It would be possible to check that if we define the “straight lines”
of #2 to be the geodesics for { , ), then the Poincaré upper half-plane satisfies
the axioms for non-Euclidean geometry, and then conclude, by a theorem of
non-Euclidean geometry, that the sum of the angles of a geodesic triangle s
always < 7. Happily, we can also reach this conclusion simply by applying
the Gauss-Bonnet Formula. Indeed we find (Corollary 7) that for a geodesic
triangle A with interior angles (1, 12,13 we have

n—-(11+12+13):—/ —1dA = area(h) > 0.
A

This also shows us that small triangles are very close to Euclidean triangles: the
sum ¢ + &> + (3 can be made as close to 7 as we like. It follows that the interior
angles of an n-gon can be made as close to (n — 1)7 as we like.

In contrast to the situation for small triangles, let us consider what happens
when we take 2 fixed geodesic rays from a point P and join points far out
on each of the two sides with a third geodesic. The figure below shows two
geodesic rays, both of which are portions of circles or straight lines which meet
the x-axis at right angles (Problem I.9-41). The dashed line is another geodesic

which “meets these at 0 angle”. Of course, this third geodesic doesn’t really
meet either of the first two in #2. But it is clear from this picture that if we
take points Py and P, far enough out on the two original geodesics, then the
angles 0 and 6, between the unique geodesic through Py and P; and our given
geodesics can be made as small as we like.
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Now let us take a point P in H#2, and draw 4g geodesic rays from P, the
angle between two successive rays being 27 /4g. For each r > 0, consider the
equilateral 4g-sided geodesic polygon obtained by joining the points on these
rays which are at distance r from P. Let Z(r) be the sum of the interior angles

of this polygon; clearly (r) is a continuous function of r. But we have seen
that £(r) — 0 as r — oo, while as r — 0 we have X(r) — (4g — D > 2m
for g > 2. Soif g > 2, then there is an r with ¥(r) = 2x. This gives us an
equilateral 4g-gon with the sum of the interior angles = 27. After identifying

pairs of sides according to the scheme on page 292 we then have a metric on
the surface of genus g with constant curvature K = —1.

We add here some supplementary remarks which may be of interest to read-
ers familiar with complex analysis. The necessary identification of pairs of sides
can easily be accomplished by means of one-one complex analytic maps of F?
onto itself, and it is thus easy to see that M can be made into a Riemann surface
(a complex manifold of complex dimension 1), meaning that there is a collec-
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tion A of homeomorphisms /: U — C = R?, from open subsets U C M onto
open subsets of C, such that

(i) the union of the domains of all f € A covers M
m)if f:U —> Cand g: V — C are in A, then

go [T fIUNV) - gUNV)
is complex analytic.

[In fact, it 1s possible to establish even more. Since each vertex of our polygon
has angle 2 /4g, we can arrange exactly 4g polygons congruent to it around
every vertex. The same construction can be carried out at the new vertices of
the new polygons, and the construction can then be repeated indefinitely. In
this way we arrive at a “tiling” of the hyperbolic plane by equilateral 4g-gons.
The one-one complex analytic maps of #2 onto itself which are required for
identifying the sides of our original polygon all preserve the tiling, and generate
a group 4, with M homeomorphic to the quotient space #2/§ obtained by
identifying z and g(z) for all z € #2 and g € . The map #* — H?/§ de-
fined by taking z into its equivalence class in #2/§ is a covering map. Thus we
obtain an explicit construction of a covering map 7: #? — M, which shows
that ¢ must be isomorphic to m(M), and that the universal covering space
of M is homeomorphic to R?. (The latter fact could also have been deduced
from purely topological considerations, since all simply-connected (paracom-
pact) 2-manifolds are homeomorphic to either R? or 2, and S? cannot be the
universal covering space of M since S? is compact, while 1(M) is infinite.)]

There are also two other methods which we can use to put a complex mani-
fold structure on M.

Method A. Choose an arbitrary Riemannian metric { , ) for M. We recall
(pg. I1.296) that a map [ between Riemannian manifolds is conformal if each
J+ 1s angle preserving. For any point p of a 2-dimensional Riemannian manifold
(M, { ., )), there 1s a neighborhood U of p and a conformal diffeomorphism
£ U — R? onto an open subset of R? with its usual Riemannian metric; this
fact was mentioned in Volume II, and a proof will be found m Addendum 1
to Chapter 9 of these Volumes. It is also an elementary fact (Problem 4-9)
that a diffeomorphism f: W — C, from an open set W C C onto an open
subset of C. is complex analvtic if and only if' " is orlentation preserving and
conformal with respect to the usual metric on R?. We can therefore define A
to be the collection of all conformal orientation preserving f: U — R2 if
/.g € A then go [~ is orientation preserving and conformal, so it is complex
analvtic.
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Method B. This method involves the Riemann surface, including branch points,
of a “complete analytic function”. From its definition, it is clear that this surface
is a Riemann surface in the sense of being a complex manifold. On the other
hand, the usual method for visualizing the Riemann surface of

JE=DE=2).. -2+ D)

is to take two copies of the Riemann sphere, make “cuts” from 1 to 2, from 3

to 4, ..., and from 2g + 1 to 2g +2, and idenufy the corresponding cuts in the
a b . 4
P Y
first Riemann sphere second Riemann sphere

two different spheres. This is homeomorphic to the g-holed torus.

If we use one of these two methods for putting a complex manifold structure
on a compact oriented surface M of genus g > 2, then we can give another
construction of a metric on M with constant curvature K = —1, provided that
we are willing to use vet more machinery. We consider the universal covering

space M — M, and give it the structure of a Riemann surface in the obvious
way. Then M is the quotient of M by the group of cov ermg transformations,
each of which is a one-one complex analytic map of M onto itself. Now we
expect that M is #2 (as we have already mentioned at the beginning of this
whole discussion). We can establish this fact mdependently by using the “gen-
eral uniformization theorem”, which tells us that the slmply—connected Rie-
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mann surface M must be analytically equivalent to either C or the upper half-
plane #2. Now all one-one complex analytic maps of C onto itself are of the
form z — az+b. This group, and hence any subgroup, is abelian, while the fun-
damental group of M 1s non-abelian if it has genus > 2. So if M is a compact
surface of genus g > 2, then M is #2 But the only one-one complex analytic
maps of #? onto itself are of the form z +— (az + b)/(cz + d), and (Prob-
lem 1.9-47, or Problem 7-6) these maps are isometries of #2 with the met-
ric (dx ® dx + dy ® dy)/y?. Consequently, M has a metric { , ) such that
a*( , ) = (dxQ@dx+dy®dy)/y?*; clearly (M, { , )) has constant curvature —1.
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ADDENDUM 2
THE DEGREE OF THE NORMAL MAP

Let M C R™ be a compact hypersurface with normal map v: M — S™1;
we want to show that the degree of v is x(M)/2. We will actually prove a more
general result, involving any compact orientable manifold M” C R™. From
the Addendum to Chapter 1.9 we know that for sufficiently small & > 0, the
set N = {g € R™ : d(q, M) < &} is a compact m-dimensional manifold-with-
boundary, which is a tubular neighborhood under a projection map 7: N —
M. We give N the usual orientation and dN the induced orientation, so that
the corresponding normal map v: N — Sm=1is outward pointing. We will
show that:

The degree of the normal map v: dN — S™ Vs x(M).

[In the special case where M C R™ is a hypersurface, the manifold dN consists
of two components each homeomorphic to M, and the degree of v: IN —
$m=1 is just twice the degree of the normal map of M, so it will follow that this
degree is x(M)/2.]

We will follow the exposition in Milnor {1}. The first step is a simple

21. LEMMA. Let N C R™ be a compact m-dimensional manifold-with-
boundary, and let v: N — S™! be the normal map. Let X be a vector
field on N with isolated zeros, and suppose that X is outward pointing on dN.
Then the degree of v: dN — $™ ! is equal to the sum of the indices of X.

PROOF. Weregard X asamap X: N — R™. Let py,..., pk be the zeros of X,
and let Uy, ..., Uy be open e-balls around pi, ..., px with all U; C interior N.
Then 8 = N — (U; U --- U Uy) is a compact manifold-with-boundary, and
X=X/|X|: 8~ Sm=1 Now if w is any (m — 1)-form on Sm=1 then

Y*(w):(degreef|8£)~ w.
9B Sm—1

By Stokes’ Theorem we have
o) = / dX*(w) = / X*(dw) =0,
18 B B

so the degree of X108 must be 0. But X|dN is smoothly homotopic to v, while
the degrees on the other components of 38 are the negatives of the indices
of X at the p; (the minus signs come from the fact that the orientations on
these components are the negatives of the usual ones). Thus

degv — (sum of indices of X at the p;) = 0. &
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Now suppose we have a compact oriented manifold M” C R™ and we choose
an arbitrary vector field X on M with only isolated zeros; according to the
Poincaré-Hopt Theorem (I.11-30) the sum of 1its indices 1s x(M). We can ex-
tend X to a vector field Y on the tubular neighborhood N i a rather obvious
way, by defining

(%) Y(p)=1[p—a(p)]+ X(=(p)) (considered as a vector at p).

Since the normal v(p) poimts in the direction from 7(p) to p (Problem 2), and
the vector p — w(p) 1s perpendicular to Mp, it is clear that Y points outward

along dN, and that the zeros of Y in all of N are precisely the zeros of X in M.
If we could show that the index of Y at such a zero equals the index of’ X, then
the desired result would follow from Lemma 21. However, a direct analysis of
the index of Y turns out to be very difficult, so we take a slight detour.

Consider first a vector field X on R”, with an isolated zero at 0 € R". We
regard X as a function X : R” — R”", and we define X to be non-degenerate
at 0 if the derivative DX(0): R” — R” 1s non-singular.

22. LEMMA. If X has a non-degenerate zero at 0, then the mdex of X at 0
15 +1 or —1, depending on whether det DX(p) > 0 or < 0.

PROOF. We can assume p = 0. Then X 1s a diffeomorphism on some convex
open neighborhood U of 0. In the proof of Lemma 1. 11-27 we saw that if X is
orientation preserving. then X is smoothly homotopic to the identity via maps
which have no zeros. So the mdex 1s 1. Smmilarly if X' reverses orientation.
then it 1s smoothly homotopic to a reflection, and has mdex —1. o

Now consider an oriented #-manifold M. and a vector field X on M with
an isolated zevo at p € M. Let /0 U — R" be an orientation preserving
diffeomorphism. where U C M is an open set contaming p, and f(p) = 0.
Then f, X is a vector field on R”. and we define X to be non-degenerate at p if
J+ X s non-degenerate at 0. If M C R™ is a submanifold of R™. and we regard
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the vector field X on M as a function X : M — R™ then DX(p): R™ —» R™
will take M, to M,. In fact, for the function X o SR - M we have
(X o /™Yt R"% — My; but (f71).(R") = M,, while X, is the same as DX
on M,. Itis easy to see from Lemma 22 that if p 1s a non-degenerate 0, then
the index of X at0is +1 or —1I, depending on whether det DX (p): M, — M,
is > 0or <0.

23. THEOREM. Let M" C R™ be a compact oriented manifold with a closed
tubular neighborhood 7: N — M. Then the degree of the normal map
v IN — S™Vis x(M).

PROOF. We will show that there is a vector field X on M with only non-
degenerate zeros. Assuming this fact for the moment, we use the vector field X
to define a vector field ¥ on N by (x). It is easy to see that for p € M we have

DX(p) on M,

PY(p) = {I on Mt

Therefore det DY(p) = det DX(p): M, — M,. So the index of Y at a
zero p equals the index of X at p. Then Lemma 21 implies that the degree
of v: N — S™ 1 is the sum of the indices of X, which equals x(M) by the
Poincaré-Hopf Theorem.

To obtain the desired vector field on M, we first choose a vector field X
with only finitely many (possibly degenerate) zeros (as on pp. 1.449-450). It
obviously suffices to show that for each zero p we can find a new vector field
which equals X outside of a small neighborhood U of p, and has only non-
degenerate zeros inside the neighborhood. It obviously suffices to work on R".
Given a neighborhood U of a zero p € R”, let f: R" — [0, 1] be a C* function
which is 1 on an open set W with p € W C W C U, and 0 on R” —U. By Sard’s
Theorem, there is a regular value Xo of X arbitrarily close to 0. Consider the
vector field

X=X-f X

Within W this vector field is 0 only at points ¢ with X(¢) = Xp. so all zeros
in W are non-degenerate; on the other hand, in U — W there are no zeros at
all ift Xp is sufficiently small.

As a final remark, we note that if we choose U to be a closed manifold-
with-boundary, then the sum of the indices of X at zeros within U is just the
degree of X/|X|: U — S™1, as in the proof of Lemma 21. But this map is
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the map X/|X|: 0U — S™=1_ whose degree is, by definition, the index of X
at p. So, without using the Poincaré-Hopf Theorem, we have reproved the
fact that for any vector field X on M with only isolated zeros, the sum of its
indices is a constant, namely degv: dN — S™'. We could then identify this
constant with x(M) as we did in Chapter L11, when we originally proved the
Poincaré-Hopf Theorem.
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PROBLEMS

1. Let X C R™ be any set.

(a) The convex hull H(X) is the union of the convex hulls of all finite subsets
of X.

(b) The convex hull of m 4 2 points in R™ 1s the union of the convex hulls of
all its subsets of m + 1 points.

(c) If X is compact, then so 1s H(X).

2. Prove the assertions about the normals to a canal surface on page 287, and
the normals of the tubular neighborhood, on page 300, by using the argument
in Problem 3-12. Also generalize the argument of Problem 1.9-28.
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Adapted moving frame, 17
Affine, see also Special affine
conformal structure, 79
invariants, 71
map, 71
normal direction, 97
special linear, 71
special orthogonal, 71
Ambient space, |
Analytic flat Mébius strip, 239
Angle
between two vectors, 262
interior, 267
Apolar, 94, 95
Apolarity condition(s), 95, 107
geometric interpretation of, 115
Approximate a surface up to second
order, 36
Asymptote, 49
Asymptotic
at a point, 196
curve, 195
directions, 49
Tschebyscheff net, 251
vector, 136
Auto-parallel, 22
Axes, principal, 48

Beltrami, E., 200, 226
Beltrami-Enneper Theorem, 200
Bol, G., 199

Bonnet, O., 56, 185, 203
Branch points, 221, 297
Branched covering space, 221

Canal surface, 286
Canonical parameterization
for catenoid, 161
for surface of revolution, 158
Carathéodory, C., 199
Cartan, Elie, 193
Cartan’s Lemma, 18

INDEX

aNnn

Catenary, 160
Catenoid, 160, 170

canonical parameterization for, 161
Cayley-Hamilton Theorem, 62
Characteristic

line, 180
point, 180
Clairaut, A.C., 214
Classical
classification of developable surfaces,
237

counterexample, 166
Hat surfaces, 141
tensor analysis treatment of subman-
ifolds, 12
Codazzi-Mainardi equations, 10, 11,
16, 20, 56, 70, 74, 134, 217
special affine, 132
Codimension, 1
Compact surfaces of constant negative
curvature, 292
Complete analytic function, 297
Complete surfaces of constant curva-
ture, 233 fI.
Cone, generalized, 142
Conformal, 208, 296
structure, 79
Connection
forms, 16
induced, 23
Constant curvature, 11
compact surfaces of negative, 292
complete surfaces of, 233 ff.
isometry of simply-connected mani-
folds with same, 30 ff,
manifolds, 25 ff.
rotation surfaces of, 161
Continuation of an isometry, 30
Convex, 64
hull, 281
Covering space, branched, 291

Cubic

forms, invariants of, 111
osculating, 48, 111

Curvature, see also Constant curvature
absolute, total, 278
forms, 16
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Curvature (continued)
Gaussian, 49, 136
in orthogonal coordinate system,
217
geodesic, 187
line of (¢. v, 195
mean, 49, 136
normal, 187
positive, 63
principal, 48, 136
sectional, 5
special affine (extrinsic), 128
special affine mean, 128
special affine principal, 128
total, 286
total absolute, 278, 286
vector
geodesic, 3, 187
normal, 187
Cuspidal edge, 143
Cuts, 297
Cylinder
generalized, 141
parabolic, 41
C®, see Smooth

Darboux, G., 190, 201, 208
Darboux frame, 191
Degenerate, see Non-degenerate
Degree of the normal map, 299
Developable
surfaces, 197, 236
classical classification of, 237
tangent, 142
Development, 146
Directions
asymptotic, 49
principal, 48, 136
special affine, 128
Directrix, 147
Discontinuity of angle, 268
Distribution parameter, 148
Doubly ruled surface, 153, 155
Dual 1-forms, 16

Dupin, C., 206
Dupin indicatrix, 47

Edge
cuspidal, 143
of regression, 143
Efimov, N. V., 260
Ellipsoid, 151
lines of curvature on, 206
in a neighborhood of an umbilic,
198
umbilics on, 152
Elliptic
hyperboloid (of one sheet), 152
hyperboloid (of two sheets), 154
umbilics on, 154
paraboloid, 39, 154
umbilics on, 155
point, 39, 78
Enneper, A., 200; see also Beltrami-
Enneper theorem
Enneper’s minimal surface, 174
Envelope, 176
of one-parameter family of planes,
179
Equations of structure of SO@3), 71,
73; see also Structural equations
Euclidean motion, proper, 51
Euler characteristic, 271
Euler’s Theorem, 188

Fary, L, 291
Fenchel, W,, 289, 290
First fundamental form, 31
of a map, 32
special affine, 82
of a map, 89
First structural equation, 16
Flat, 49
Moébius strip, 149, 239
surfaces, classical, 141
torus, 61



Frame
adapted moving, 17
Darboux, 191
Frenet, 191
Frenet frame, 191
Frobenius, G., 230
Fundamental forms, see First, second,
third fundamental forms
Fundamental theorem of special affine
surface theory, 132

Fundamental theorem of surface
theory, 56, 73, 74

Gauss, C.F, 53
Gauss formulas, 4, 14, 19, 53

special affine, 105
Gauss’ equation, 5, 11, 16, 20, 55, 74
Gauss’ Theorema Egregium, 5, 55, 69
Gauss-Bonnet formula, 268
Gauss-Bonnet theorem, 271
Gaussian curvature, 49, 136

in orthogonal coordinate system,

217

General affine invariants, 71
General uniformization theorem, 297
Generalized

cone, 142

cylinder, 141
Geodesic, 3, 196

at a point, 24

curvature, 187

curvature vector, 3, 187

on surface of revolution, 214

on torus, 230

torsion, 191

totally, 24

Geometric interpretation of apolarity,
115
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Hadamard, J., 66
Hamburger, H., 199
Hazzidakis’ formula, 255
Helicoid, 150, 170
Hilbert, D., 233, 247
Hilbert’s theorem, 247
Holmgren, E., 247
Hopf Umlaufsatz, 266
generalization of, 269
Horn, R.A., 290
Hull, convex, 281

Hyperbolic
paraboloid, 40, 155
point, 40, 78

Hyperboloid

elliptic (of one sheet), 152
elliptic (of two sheets), 154
umbilics on, 154
of revolution, 152
striction curve of, 183
Hypersurface, 7

Idiot, any, 103
Immersion, isometric, 1
Index of singularity of i-dimensional
distribution, 218
Indicatrix of Dupin, 47
Induced connection, 23
Interior angle, 267
Invariant
affine, 71
meaning, 60
under orientation preserving change
of parameter, 85
under proper Fuclidean motions, 51
Invariants for cubic forms, 111
Inversion, 208
Inward, 78, 88
Isometric immersion, 1
Isometry
continuation of, 30
of simply-connected manifold with
same curvature, 30 ff.
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Jacobt, C.G.J., 276
Joachimsthal, F, 203

K, in orthogonal coordinate system,
217

Klotz, T., 199, 260

Knotted, 291

Laguerre, E., 193
Levi-Civita, T., 181
Linear affine maps, special, 71
Lines of curvature, 195

on an ellipsoid, 206

in a neighborhood of an umbilic,
198

Liouville, J., 209

Mainardi, G., 10; see also Codazzi-
Mainardi equations
Malz, R., 243
Mean curvature, 49, 136
special affine, 128
Meridian, 156
Meusnier’s Theorem, 189
Milnor, J. W., 291, 299
Minimal surface, 167
Enneper’s, 174
Scherk’s, 171
Mobius, A.F, 209
Mbbius strip, 148
analviic flat, 239
smooth flat, 149
Monkey saddle, 41
Morse theory, 286
Motion, proper Euclidean, 31
Moving frame, adapted, 17

Navel point, 50, 136
Negative constant curvature, Compact
surfaces of, 292

Neighborhood, tubular, 299
Non-degenerate, 93, 300
Non-Euclidean plane, 293
Normal

curvature, 187

curvature vector, 187

direction, affine, 97

field, unit, 7

map, degree of, 299

projection, 1

special affine, 101

One-dimensional distribution, index of
singularity of, 218
Orthogonal affine maps, special, 71
Orthogonal systems of surfaces, triply,
204
Osculating
circle, 224
cubic, 48, 111
paraboloid, 42

Parabolic

cylinder, 41

point, 40, 78
Paraboloid

elliptic, 39, 154

umbilics on, 155

hyperbolic, 40, 155

osculating, 42
Parallel along a curve, 3, 18]
Paralle] surface, 185
Parallel, on surface of revolution, 156
Perpendicular projection, |
Pick invariant, 116, 231
Planar point, 41, 78
Plane, 141

support, 64
Point inward, 78, 88



Polygon, 266
Positive curvature, 63
Principal
at a point, 196
axes, 48
curvatures, 48, 136
special affine, 128
curve, 195
directions, 48, 136
special affine, 128
vector, 48, 136
Profile curve, 156
Projection
normal, 1
perpendicular, 1
tangential, 1
Proper Euclidean motion, 51

Pseudosphere, 163

Quadratic, 92
(or quadric) surface, 118, 151
Quasi-orthonormal, 79, 88

Radon, J., 132
Rectifying plane, 186
Regression, edge of, 143
Revolution, see Surface of revolution
Riemann, G.F. B., 166
Riemann surface, 295
Right helicoid, 150
Rodrigues’ formula, 195
Rotation surfaces, see Surface of revolu-
tion
Ruled surfaces, 146
doubly, 153, 155
Rulings, 147
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Saddle, monkey, 41
Scherk’s minimal surface, 171
Scroll, 147
Second fundamental form, 8, 9, 33
of a map, 34
special affine, 105
of a map, 105
Second order approximation of surface,
36
Second structural equation, 16
Sectional curvature, 5
Similarity, 208
Simply-connected manifolds with same
constant curvature, 30
Singularity of 1-dimensional distribu-
tion, index of, 218
Smooth flat Mébius strip, 149
SO(3), equations of structure of, 71
Special affine, 71
Codazzi-Mainardi equations, 132
(extrinsic) curvature, 128
first fundamental form, 82, 89
of a map, 83, 89
Gauss formulas, 105
geometry of surfaces, 71
mean curvature, 128
normal, 101
principal curvatures, 128
principal directions, 128
second fundamental form, 105
of a map, 105
surface theory
fundamental theorem of, 132
Special linear affine map, 71
Special orthogonal affine map, 71
Sphere, 151
Standard parameterization, 148
Steiner, J., 186
Striction curve, 148, 183
Structural equation(s)
first, 16
of SO(3), 71, 73
second, 16
Support
function, 184
plane. 64
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Surface

approximate up to second order, 36
PP p )

classical flat, 141
compact of constant negative curva-
ture, 292
complete, of constant curvature,
233 ff.
developable, 197, 236
classical classification of, 237
doubly ruled, 153, 155
flat, 141
minimal, 167
of revolution, 156
canonical parameterization of,
158
geodesics on, 214
of constant curvature, 161
quadratic, quadric, 118, 151
Riemann, 295
ruled, 146
special affine geometry of, 71
triply orthogonal system of, 204
Surface theory, fundamental theorem
of, 56, 73, 74
Switcheroo, familiar old, 52
Synge’s inequality, 6

Tangent developable, 142
striction curve of, 183
Tangent to M, 1
Tangential projection, 1
Tensor analysis treatment of submani-
folds, 12
Terquem-Joachimsthal theorem, 203
Theorema Egregium, 535, 69
Third fundamental form, 62
of a map, 62
Tiling, 296
Topset, 281
Torsion, geodesic, 191
Torus
flat, 61

g-holed, 292
geodesics on, 230
umbilics on, 160, 198
Total
absolute curvature, 278
curvature, 286
Totally geodesic, 24
Tractrix, 164
Triangulation, 222, 270
Triply orthogonal system of surfaces,
204
Tschebyscheff net, 250
asymptotic, 251
Tubular neighborhood, 299
Type of a point, 78

Umbilic, 50, 136

on ellipsoid, 132

lines of curvature in a neighbor-
hood of, 198

on elliptic hyperboloid, 154

on elliptic paraboloid, 135

on torus, 160

surface with all points, 51
Umlaufsatz, see Hopf Umlaufsatz
Uniformization theorem, general, 297
Unit normal field, 7
Unknotted, 291

Vertices, 266
Voss, K., 290

Weingarten equations, 7, 8, 9, 14, 20,
53, 122
Wunderlich, W.,, 239



